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ABSTRACT 

The proposed numerical model determines the temperature distribution 
in convectivefy heated liquid brine and in conductively heated mushroom 
solid during in-can sterilization. The convective heat transfer in the brine 
is described by the regular regime equation and the conductive heat 
transfer in the mushrooms which have an irregular shape by the general- 
ized equation of heat conduction. The predicted results obtained by using 
this method are compared with experimental results. The proposed 
approach may also be used for simulating the temperature in heating and 
cooling of heterogeneous foodstuffs. 
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NOTATION 

Thermal diffusivity of mushroom flesh ( mz s- ‘) 
Heating/cooling rate of the medium (“C s- ‘) 
Specific heat capacity of mushroom (J kg- I K- ’ ) 
Average (for the process) relative deviation between the temperatures 
determined theoretically and by experiments (Oh) 
Thermal inertia coefficient of the brine (s) 
Relative deviation between the F-effects computed on the basis of the 
theoretically and experimentally determined temperatures (%) 
Sterilization F-effect (min or s) 
Shape factor: G= S-R/V- 1 
Convective heat transfer coefficient at the mushroom surface (W m-2 
K-l) 
Thermal conductivity of the mushroom (W m- * K- ‘) 
Number of experimentally measured temperatures during the process 
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Number of discretization intervals of dimension R 
The smallest characteristic dimension of the mushroom body presenting 
the shortest distance between the thermal centre and the surface (m) 
Heat transfer surface of the mushroom (m*) 
Current time (s or min) 
Current temperature (“C) 
Volume of the mushroom ( m3) 
Generalized current coordinate of the mushroom solid (m) as 0 < x < R 
Temperature sensitivity of the inactivated microorganism: z = 10°C 

P Density of mushroom flesh (kg m-“) 

Subscripts 
a Temperature of asymptote 
i Second index of the position of a node in the finite difference scheme on 

the axis x=i*R/n as i=O,1,2 ,..., n. For the thermal centre i= 0 and for 
the solid surface i = n 

1 Liquid brine 
m Heating/cooling medium 
0 Initial temperature of the mushroom: T, = const. 
s Mushroom solid 
st Standard temperature: T,, = 12 1~1°C 

Superscripts 
e Experimental 
0 Initial 
t Theoretical 
V Volume average 

Functions 
Int( x) Integral part of the argument x 
Sgn(x) = 1, 0, - 1 when the argument x> 0, x= 0 and x < 0, respectively 

INTRODUCTION 

Sterilization is a widespread industrial process for preserving foodstuffs. For 
health and safety reasons and for process optimization of the unsteady-state 
sterilization process it is very important to model the temperature distribution in 
canned foods. 

Canned mushrooms contain brine which is a low-viscosity liquid and is 
heated by convection. The temperature distribution in this liquid is assumed to 
be uniform in this volume and its change during the thermal process is described 
by the regular regime differential equation (Kondratev, 1954; Poshtov et al., 
1963; Molodetzki, 1968; Videv, 1972; Bimbenet & Michiels, 1974). 

Mushrooms have bodies of rotation with an irregular cross-sectional contour 
and are heated by conduction. The temperature distribution of irregular shaped 
foodstuffs was computed by means of the three- or two-dimensional differential 
equation of heat conduction and by using the finite element method (e.g. Naveh 
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et al., 1983) or the finite difference method (e.g. Manson et al., 1974; Sheen & 
Hayakawa, 1991). Sastry et al. (1985) simulated the temperature distribution in 
canned mushrooms using a three-dimensional finite element model and the 
ambient temperature of brine was obtained from experimental heating data. The 
generalized finite difference method (Fikiin & Fikiin, 1989; Akterian & Fikiin, 
1994) allows the reduction of this three-dimensional problem to a one- 
dimensional one. 

Bimbenet and Duquenoy (1974) and Sawada and Merson (1986) modelled 
the temperature distribution of heterogeneous canned foods (including liquid 
and solid fractions) by a system of two differential equations: one for the regular 
regime which concerns the liquid part and the other for the heat conduction in 
the solid foodstuff. But these authors solved this system only for regular shaped 
foodstuffs and at a constant ambient temperature. 

The object of this paper is to develop and verify experimentally an engineer- 
ing numerical approach for determining the temperature distribution in canned 
mushrooms in brine undergoing sterilization at variable ambient temperature. 

THEORETICAL BASIS 

The temperature T, of liquid in convectively heated cans is described by the 
regular regime differential equation (Videv, 1972): 

Ex$=7,-?; or $ln(Tm- T,)]= -i 

The coefficient E of thermal inertia (Fig. 1) characterizes the temperature lag of 
the liquid ( T,) from the medium ( T,). 

During a linear change in the medium temperature T,,, = T”, + bt, the liquid 
temperature is calculated by the following analytical relationship (Videv, 1972): 

T,= T,,,- bE-(T;-- TT - bE)*exp( - t/E) (24 

T 
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Fig. 1. Temperature curves of the heat transfer medium (T,,,) and liquid (T,) during 
heating. 
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or 

,* G-T t 
----= -- or In 

T,-T t 

T;--T; E T;- T;= -E (2b) 

when b= 0 ( T,, = const.) where T, = T, - bE is the temperature of the asymp- 
tote, T-k = T,,,, Ti’ = T,, Tg = T, at the beginning of a linear phase. 

Durmg the regular regime the temperature curve of the liquid appears as a 
straight line when plotted as hr( T, - T, - bE) versus t. 

The temperature T, in a mushroom (a body with an irregular shape) is 
modelled by the generalized differential equation of heat conduction (Fikiin & 
Fikiin, 1989; Akterian & Fikiin, 1994): 

(3) 

The temperature distribution of the generalized coordinate x (the shortest 
route for heat penetration) is of greatest interest for engineering investigations. 
The corresponding initial and convective boundary condition of the third kind 
are: 

T,= To at t=O (4) 

aT. 
L = - $ ( T, - T) 
ax 

for mushroom surface (x= R) (5) 

aK 
ax=0 for mushroom centre (x= 0) (6) 

The average volume temperature T,” of a mushroom is evaluated by means of 
the following relationship (Akterian & Fikiin, 1994): 

n’/2 n’/2 - I 

T:= 
G+l 

3xn”+’ I 
4x C(2xj-1)G~,~xj-~+2x 1 (2xj)“q,*.j+?ZGT,,, 

j= I /= I 

+[l -Sgn(G)]T,,,+(n- n*)[2*5(n- l)‘T,,,-, +@5nGT,,.1 
1 

(7) 

Fig. 2. Equipotential temperature curves across a front section of a mushroom and the 
generalized coordinate axis x. 
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where II* = 2Int( n/2); IZ 2 4 and 1 - index of the summations (C). 
On the basis of this theoretical model and the finite differences algorithms 

(Akterian & Fikiin, 1994) a suitable computer program was developed for 
integrating eqn (3) for uniqueness conditions (4)-(6). This program simulates, 
simultaneously, the convective heating of the liquid brine, the conductive 
transfer in solid mushrooms and predicts the temperature distribution in the 
cans of mushrooms during sterilization with a linear pattern of heating and 
cooling medium temperature change (gradients). 

MATERIALS AND METHODS 

For experimental verification of the developed model 10 experimental 
time-temperature curves (Tolba, 1993) were used. These curves were measured 
during the sterilization of brined mushrooms packed in glass ‘Omnia’ O-8 jars. 
The dimensions of this jar are diameter 105 mm, height 130 mm, volume 
800 cm3 by the Bulgarian State Standard (BDS 16 121-85). Each jar contained 
300 g whole mushrooms vanity Agaricus campestris and the remainder was 1% 
brine. 

The experimental thermal process was carried out in a pilot retort (auto- 
clave). The heating was done by an electric heater and the cooling by adding 
cool water to produce a linear pattern of temperature change as shown in Figs 3 
and 4. 

The temperature distribution during sterilization was measured by means of 
copper-constantan thermocouple probes each of which was fitted in a stainless 
needle with a diameter of 1 mm. The error of the calibrated thermocouples 

10 20 30 40 50 60 70 

Time (mid 

Fig. 3. Theoretical (lined) and experimental (marked) time-temperature curves during 
sterilization of brined mushrooms. Theoretical curves are computed using the individual 
geometric and thermophysical characteristics of the investigated canned food. The 
deviations between theoretical and experimental curves of the brine are D=O~95%, 

DF= - 17.7% and in the mushroom are D= l-96%, DF= 41.0%. 
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Fig. 4. Theoretical (lined) and experimental (marked) time-temperature curves during 
sterilization of brined mushrooms. Theoretical curves are computed using the average 
geometric and thermophysical characteristics of all the studied canned mushrooms. The 
deviations between theoretical and experimental curves of the brine are D- l-75%, 

DF= - 17.2% and for the mushroom are D = O-84%, DF= 39.6%. 

compared to a standard thermometer is less than 05°C. The first thermocouple 
measured the temperature of the heating/cooling medium in the retort and the 
second the temperature of liquid brine. The third thermocouple was fitted along 
the axis of the mushroom stump and the needle end was located in the thermal 
centre of the mushroom (in the middle of the mushroom hood). 

The following indices are used to evaluate the accuracy and applicability of 
the theoretical results. 

(i) Average relative deviation between the temperatures determined theore- 
tically and experimentally: 

When DS 10% it can be assumed according to Grubov (1971) that the applied 
approach meets the engineering requirements. 

(ii) Relative deviation of the F-effects was computed respectively on the basis 
of theoretically and experimentally determined temperatures: 

DF= y 100 (%) 

where the food safety index F-effect is determined by the well-known formula: 

F= 

I 

‘lO:r,(+r,,)/z dt 

0 
(10) 
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RESULTS AND DISCUSSION 

For predicting the temperature of liquid brine by eqns (1) and (2) it was neces- 
sary to have previously determined the values of the coefficient E. For this the 
experimental temperature curves of the liquid brine and the heating medium 
were used. These curves were divided into three phases with linear increase, 
holding and linear decrease of the medium temperature T,,, 

The appropriate values of the coefficient E in each phase were determined by 
scanning so that the differences D (eqn (8)) and DF (eqn (9)) between experi- 
mental and theoretical (eqn ( 2)) curves are minimal. 

The range and average (underlined) values of the identified coefficients E 
referred to the studied curves are: 

(a) for the increasing temperature phase E, = 32 1 - 359 - 384 s 
(b) for the holding phase E,=438-514-570s (11) 
(c) for the decreasing temperature phase E, = 252 - 276 - 300 s 

The range and average (underlined) values of the differences D and ) DFI are 
O-9-m-1.2% and 0*7-u-18*1%, respectively. 

To compute the temperature distribution in the mushrooms by eqns (3)-( 7) it 
was necessary to determine some geometric and therm0 physical characteristics 
of the mushrooms. Using 50 mushrooms the range and average (underlined) 
values of the geometric characteristics were: 

(a) shape factor: G= 0.93-u-1.39 
(b) the smallest characteristic dimension: R = 9-m- 12.5 mm (12) 

The thermophysical characteristics of mushroom flesh were determined 
experimentally or calculated by theoretical relationships and assumed to be 
constant with temperature: p=744 kg mm3, c=3965 J kg-’ K-t, k=0.35 W 
m-l K-l, a= k/(c*p)= 118 X lo-‘m* s-‘. The heat transfer coefficient h= 100 
W m-* s-l was evaluated as a mean integral effective value for the entire 
process and along the whole heat transfer surface of canned mushrooms by 
experimental determination of the surface heat fly density. 

It is necessary to discuss what the temperature reading of the thermocouple in 
the mushroom represents. The thermal conductivity (k) of mushrooms is 50 
times less than of the thermocouple probe. On the other hand the heat capacity 
(CT m) of mushroom is 400 times higher than that of the probe. Moreover, even 
the small shrinkage of the mushroom leads to filling of the thermocouple hole 
with the easy-conductive brine. Therefore, the temperature reading does not 
correspond with that of the thermal centre. This is confirmed by the results of 
Sastry et al. (1985) where a similar lag in the thermocouple temperature from 
the computed one in the mushroom centre is observed. In the present case, in 
view of the large contact between the mushroom and the temperature probe it 
was assumed that the temperature reading corresponds to the average volume 
temperature of the mushroom. 

In Figs 3 and 4 typical experimental (marked) and theoretical (lined) 
time-temperature curves of mushroom and brine are given. In Fig. 3 the 
theoretical curve was computed using the individual geometric characteristics 
(R = 10 mm, G= l-08) of the mushroom investigated and the thermal inertia 
coefficients (E, = 321 s, E, = 570 s, E, = 276 s) of canned mushrooms. The 
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analogous curve in Fig. 4 was computed by using the average geometry charac- 
teristics ( 12) and the average values of the thermal inertia coefficients ( 11). 

The range and average (underlined) values of the difference D were 
0.9~a-8.7% while the values for ( DF( were 14-z-42%. 

CONCLUSION 

The proposed approach predicts with high accuracy the engineering computa- 
tions of temperature distribution in brine liquid and mushroom solid. 

It should be noted that the solution ensures satisfactory precision even under 
unfavourable conditions of modelling such as using average values of geometric 
and thermophysical characteristics. 

The presented model could also be used to simulate the temperature distribu- 
tion in other kinds of heterogeneous canned whole or cut fruit, vegetables, meat, 
fish, sausages, etc., in liquid undergoing the thermal/cooling processes. 
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