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AbstraetLEmpirical correlation equations for the average Nusselt number have been determined that 
accurately represent an extensive body of new experimental data for the geometry under consideration for 
fully developed thermal conditions. The equations cover the Darcy, Forchheimer and turbulent regimes of 
flow. The correlation equations are based upon a hypothesis that regards the flow in a porous medium to 
be the superposition of a 'fine' component upon a 'coarse' component and takes into account the wall 
effect and dispersion. The results show that packed tubes provide heat transfer rates from two to seven 
times those of unpacked tubes for laminar flow and two to two and a half times for turbulent flow for 

equal pumping power. Copyright © 1996 Elsevier Science Ltd. 

STATEMENT OF OBJECTIVES REVIEW OF THE LITERATURE 

Several studies relating to heat transfer by forced con- 
vection in tubes packed with spheres have been pub- 
lished to date, but every such study has dealt with a 
gaseous medium (commonly air) as the saturating 
fluid and no experimental data with liquids have here- 
tofore been available. Furthermore,  numerical models 
currently used to study heat transfer in pipes packed 
with spheres do not predict heat transfer coefficients 
accurately for potentially useful ranges of  the variable 
D/d, where D and d represent the pipe and sphere 
diameters (characteristic dimensions), respectively. 
Thus, designers of  heat  transfer equipment involving 
porous media lack necessary information. 

The preceding observation provided the motivat ion 
for undertaking the present study. The objectives of  
the present work were to conduct and correlate the 
results of  experiments with a liquid (water) in the 
range of  1.14 <~D/d<~ 14.93 for laminar and tur- 
bulent flow. Also the enhancement of  heat transfer 
achievable by packing pipes with spheres will be com- 
pared with two other common enhancement tech- 
niques, namely, the use of  twisted tape inserts and 
integral fins. 

Fluid flow in porous media 
In order to deal with the problem of forced con- 

vection heat transfer from a circular tube packed 
internally with saturated porous media, it is first 
necessary to have certain information concerning the 
isothermal flow of  fluids through porous media. Fand 
et aL [1] have studied the three recognized regimes of  
flow through infinite porous media whose matrices 
are composed of  spheres, namely, the Darcy regime 
(where Red <~ ReDH~ = 2.3), the Forchheimer regime 
(where 5 = R e F L < ~ R e d < ~ R e F H = 8 0 )  and the tur- 
bulent regime (where Red >~ ReTL = 120) plus the two 
regions of  transition between these three regimes. The 
values of  the lower and upper bounds of  the flow 
regimes indicated above have been determined exper- 
imentally for dimension ratios D/d>~ 1.4. For  
1.08 ~< D/d ~< 1.40¶ Fand et al. [3] found that the 
upper and lower bounds of  all three regimes of  flow 
depend on the value of  D/d and can be represented by 
the following set of  linear equations : 

ReD, = 10.6-5.90(D/d) (1) 

RevL = 376.5-265.6(D/d) (2) 

ReFH = 707.0-488.2(D/d) (3) 

t Author to whom correspondence should be addressed. 
:~ The subscript DH is a mnemonic devise which refers to 

the highest value (H) of the particle Reynolds number for 
which Darcy (D) flow occurs. Similar subscripts are used to 
indicate the lowest value (L) of the particle Reynolds number 
for which a particular type of flow occurs. 

¶ D/d = 1 represents the lower bound for this ratio, for at 
this value the sphere diameter and tube diameter are equal 
and no flow through the tube can occur. 

ReTL = 982.1-616.2(D/d). (4) 

In their study of  fluid flow through porous media 
Fand et al. [1 ] determined that the following equations 
characterize the flow adequately for D/d > 40 : 

36~: 
f '  = ~ for Darcy flow ; (~c = 5.34) 

/~ed 
(5) 
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NOMENCLATURE 

A, A' first Ergun constants per equations (6) 5? 
and (7) 7" h 

A~,A~,. first Ergun Reichelt constants per T0 
equations (9) and (10) 

B, B' second Ergun constants per equations T~ 
(6) and (7) 

& , B ;  second Ergun-Reichelt  constants AT 
per equations (9) and (10) u 

cp specific heat of  a (saturating) fluid at X 
constant pressure 

D diameter of  a heated tube Greek 
d diameter of  a spherical particle [( 
Di dimensionless measure of  dispersion c 

per equation (27) t,- 
modified friction factor, Fd/pu2fl, 
wall modified friction factor, l"/ M ~:,, 
heat transfer coefficient 
electric current flow 2 
thermal conductivity p 
thermal dispersion conductivity v 
thermal conductivity of  the fluid 
saturating a porous medium 

k~ thermal conductivity of  the solid 
particles in a porous medium 

k~ effective thermal conductivity per 
equation (19) 

L active (heated) length of  a tube 
AL length of  a sub-section of  a tube 
M wall correction factor, 1 +2d/3D(1 - c )  
Nu Nusselt number, hD/k 
Pe Peclet number, ReDPr 
Pr Prandtl number, p%/k 
q" rate of  convective heat transfer per unit 

length of  tube 
q" rate of  convective heat transfer per unit 

surface area of  tube 
(%)' rate of  external heat loss per unit 

length of  tube 
Re~ cylinder Reynolds number, uD/v 
Red particle Reynolds number, ud/v 
Red modified particle Reynolds number, 

Red/( 1 - -  ~:) 

wall modified Reynolds number, 

Red/M /~111;i xd 

.f" 

lw 
h 
I 
k 
kd 
kj 

Rew 

Stanton number, Nu/(ReD Pr) 
bulk temperature of  a fluid 
bulk temperature of  the fluid at the 
inlet of  a tube 
temperature of  the inner surface of  a 
heated tube 
A T = ( T ~ -  Tb) 
flow speed in a porous medium 
axial distance from the inlet of  a tube. 

symbols 
a function o f <  (1 - c ) / c  ~ 
porosity 
Kozeny-Carman  factor per equation 
(5) 
wall-corrected Kozeny Carman factor 
per equation (8) 
conductivity ratio, k~jk 
density of a fluid 
kinematic viscosity of  a fluid. 

Subscripts 
bot refers to the bot tom of a horizontal 

tube 
cal refers to a calculated value 
exp refers to an experimentally determined 

value 
i refers to a quantity associated with the 

particular axial location i of  a tube 
ls refers to laminar flow in a smooth 

tube 
top refers to the top of  a horizontal tube 
ts refers to turbulent flow in a smooth 

tube. 

Error notation 
E percent error : 

[(Nu~ v -  Nu~O/Nu~p] × 100% 
E~ percent deviation of  error, IEI 
E,,~ percent mean error, (Zi~=IE,)/N 
E,,d percent mean deviation of  error, 

(Y~L, I E,I )/N 
percent maxinmm deviation of  error. 

A 
f" = Re~ + B for Forchheimer flow ; 

(A = 1 8 2 : B =  1.92). (6) 

A' 
f '  = Re~ + B" for turbulent flow : 

( A ' = 2 2 5 : B ' =  1.61), (7) 

where )'" = P'd/pu2fl,: is called the modified friction 

factor and Red = Red/(1--~:) is called the modified 
particle Reynolds number. 

The transition regions between Darcy and For- 
chheimer flow and between Forchheimer and tur- 
bulent flow are difficult to characterize because they 
cannot be represented by simple equations such as 
equations (5), (6) or (7). It was shown in ref. [1] 
that this difficulty can be overcome without incurring 
significant error by assuming that fictitious transition 
points exist, denoted by ReDv and RevT, at which the 
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flow abruptly changes from Darcy to Forchheimer 
and from Forchheimer to turbulent flow. The numeri- 
cal values of ReDF and Revr are 3 and 100, respectively. 

The effect of  the wall on the flow in a porous medium 
When a porous medium whose matrix is composed 

of discrete solid particles is confined in a duct, the wall 
of the duct affects the local magnitude of the porosity, 
e, because the spatial distribution of the particles must 
conform with the shape of the wall. This is called the 
'wall effect'. In order to account for the wall effect, 
Riechelt [4] defined the following 'wall modified' 
parameters: f w = f / M  and Rew=Re'd/M, where 
M = 1 +2d/3D(1-e),  with which equations (5)-(7) 
can be written as follows : 

fwRew = 36 xw/M 2, (8) 

fwRew = Aw + BwRew (9) 

J~vRew = A'w + B'~ Rew. (10) 

The quantity Xw is called the wall-corrected Koz- 
eny-Carman factor. Aw, Bw and Aw, Bw are referred 
to as the first and second Ergun-Riechelt constants 
for Forchheimer and turbulent flow, respectively. It 
was shown in ref. [2] that, for D/d/> 1.4, each of these 
five wall-corrected flow parameters can be represented 
by correlation equations having the following com- 
mon form : 

Y = Y~ - a [ e  /~°/a)], (11) 

where Y represents a wall-corrected parameter, Y~ 
represents the asymptotic value of that parameter, and 
f(D/d) = p(D/d) 3 + q(D/d) 2 + r(D/d). The numerical 
values of Y~ and the correlation constants, (a, p, q, r) 
for all five flow parameters are given in ref. [2]. 

For the range 1.08 <~ D/d ~< 1.40, it was shown in 
ref. [3] that each of the five wall-corrected flow pa- 
rameters can be represented by a different correlation 
equation having the following common form : 

Y = a + b(O/d) + c(O/d) 2 (12) 

where a, b and c are constants whose values are pro- 
vided in ref. [3]. 

The following experimentally determined expres- 
sions for average porosity, e, were presented in ref. 
[21: 

= O.151/(D/d- 1) +0.360 for D/d >~ 2.033, 

(13) 

e = -0.6649(D/d) + 1.8578 

for 1.866 ~< D/d < 2.033, (14) 

05) 

Equations (13)-(15) together provide an algebraic 

representation of the maximum value of e for all D/d. 
However, it should be noted that the average porosity 
of a tube packed with spheres can in practice depend 
upon several factors in addition to D/d, including 
the packing procedure, the surface roughness of the 
particles and the elasticity of the packing material. For 
values of D/d < 2 the packing is usually geometrically 
determinate (or very nearly so). As D/d increases 
beyond 2, the packing is usually random (but not 
always so, as will be shown below for the case 
D/d = 2.578). 

Heat transfer : empirical results 
As early as 1931, Colburn [5] found that the heat 

transfer rate for forced convection to air in a packed 
tube is about eight times higher than that of an 
unpacked tube. Since then several investigators, 
including Leva [6], Verschoor and Schuit [7], Plautz 
and Jhonstone [8], and Quinton and Storrow [9] have 
published empirical correlation equations for the aver- 
age heat transfer coefficient for air flow in packed 
tubes. These correlations exhibit discrepancies as large 
as 100% from one study to the next. Li and Finlayson 
[10] suggested that the discrepancies can be attributed 
to the dependence of the heat transfer coefficient on 
the length of the packed bed. Dixon and Cresswell 
[ 11] speculated that the discrepancies are due to the 
failure to recognize the influence of additional pa- 
rameters, such as the ratio of particle to tube diameter, 
the ratio of fluid to particle thermal conductivity and 
the fluid Prandtl number. None of these equations 
accounts for the important parameter called disper- 
sion. 

The phenomenon called dispersion can be described 
qualitatively by comparing the one-dimensional lami- 
nar flow of a fluid through a region of space in the 
presence of, and in the absence of, a porous matrix. 
In the absence of a porous matrix, the paths of all 
fluid particles are straight, parallel lines; whereas in 
the presence of a porous matrix, each fluid particle 
follows a tortuous path through the interstices of the 
porous medium. The trajectory of each fluid particle 
in a porous medium is a random process, the result of 
which is an overall transverse migration, or 'dis- 
persion', of the particles away from the straight, par- 
allel lines they would have followed in the absence of 
the porous medium. Dispersion affects the transfer of 
heat because, in addition to the molecular diffusion 
of heat, there is mixing due to the aforementioned 
transverse migration. 

Dispersion is a complex phenomenon. A descrip- 
tion of it as a second-order tensor is provided in ref. 
[12] in the presence of heat transfer. The components 
of this tensor for a given geometry (characterized by 
d in the present case), are functions of the Reynolds 
number of the flow, the effective thermal diffusivity, 
the magnitude of velocity of the fluid through the 
interstitial spaces in the porous medium, and the pore 
size of the porous medium (which is, in porous media 
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consisting of  spheres of  uniform diameter, in turn, a 
function of  the particle diameter d). 

Heat tran,ger : numerical results 
Early theoretical analyses of  heat transfer in packed 

tubes were performed by formulating the energy equa- 
tion corresponding to a simplified model of  the actual 
process. The early models assumed a flat velocity pro- 
file which does not take into consideration the non- 
uniform velocity distribution near the wall due to 
channeling. In later numerical models [13, 14], the 
effect of  the wall on porosity was taken into con- 
sideration. Also, the effect of dispersion on heat trans- 
fer was taken into account by introducing a thermal 
dispersion conductivity as a function of the Peclet number. 

The numerical models discussed above utilize equa- 
tions wherein the fluid velocity, pressure and tem- 
perature are averaged within a small local volume. In 
order for this local volume to represent both global 
flow variations and local interpore transport, the over- 
all geometry, such as the tube diameter, must be sig- 
nificantly larger than the characteristic length of  the 
particles or pores. In other words, the current models 
are applicable only for sufficiently high values of D/d. 
This limitation in the range of  applicability of  the 
model results in discrepancies of  the order of  25% 
between the average Nusselt numbers predicted by the 
numerical model [15] and currently available exper- 
imentally determined values for D/d < 6.7. 

EXPERIMENTAL APPARATUS 

The experimental apparatus employed in the pre- 
sent study consisted of  a high-precision stainless steel 
water tunnel which had been previously used to obtain 
the data reported in ref. [1], and is described therein. 
This water tunnel is equipped with calibrated orifices 
that permit measurement of  the volume rate of  flow 
through the tunnel. Two new test sections having 
different inside tube diameters (D = 0.018542, 
0.015367 m) were built and incorporated into the 
water tunnel for this investigation. Each of  the two 
test sections consisted of  a thin-walled type 304 stain- 
less steel tube 0.5588 m long. An upstream flange 
contains a hole through which a thermocouple can 
be inserted to measure the bulk water temperature. 
Unheated entrance sections of  length exceeding 3D 
ensure that the flow is hydrodynamically fully 
developedt prior to reaching the heated portions of 
the test sections. A photograph of  an installed test 
section is shown in Fig. l(a). Detailed drawings 
appear in ref. [17]. 

Nearly uniform wall heat flux was achieved in the 
test sections by passing direct electric currents through 
the thin stainless steel tube material. Thin coats of  
insulating varnish were applied over the tubes in order 

+ The hydrodynamic entry length lbr packed tubes does 
not exceed 1 tube diameter [15]. 

to insulate them electrically from a series of  calibrated 
copper-constantan thermocouples which were 
attached to the top and bot tom of  the outer tube walls 
at 18 locations along the length of  the tubes. The 
test sections were insulated thermally externally with 
cotton wadding so as to reduce the heat loss from the 
tubes to the surroundings. 

The pressure differences across the test section and 
across the tunnel orifices were measured with Foxboro  
differential cells. The weights of  the glass spheres 
loaded into the test sections were measured using an 
electronic balance having a resolution of  _+0.001 
grams. All temperatures were measured using a 40 
channel Fluke data acquisition system, whose output 
was communicated to a computer  through a high per- 
formance A/D converter which provided a resolution 
of  I I~V on a 64 mV range. Electrical power was de- 
livered to the test section by means of  two Sorensen 
DCS 20-150B variable power supply units which were 
connected in parallel to provide a maximum currenl 
of  300 A. A water-cooled standard resistor was con- 
nected in series with the power supplies. By measuring 
the voltage drop across the standard resistor, the cir- 
cuit current was accurately determined. 

EXPERIMENTAL PROCEDURE 

The glass spheres comprising the matrices of  the 
porous media were tightly packed into the test section 
to prevent their motion under the action of  the flowing 
water. The water was 'aged'  for 24 h prior to use, in 
order to allow for microscopic air bubbles, which were 
trapped in the tunnel during the water filling oper- 
ation, to dissolve; also, the tunnel was always pres- 
surized to approximately 3.5 atmospheres in order to 
inhibit the formation of  air or vapor bubbles. 

The experimental procedure was initiated by adjust- 
ing the speed of  the pump so as to establish a pre- 
determined steady fluid velocity. The power supply 
was then turned on and adjusted to cause an electric 
current to flow through the tube wall that raised the 
tube wall temperature by a small predetermined 
amount. The inlet bulk water temperature, the 36 
measured temperatures of  the tube wall and the volt- 
age drop across the standard resistor were recorded 
at intervals of  5 min. The temperature data were rec- 
orded directly into the computer  using a Quick Basic 
program that calculated the difference between the 
tube wall temperatures recorded at the current time 
step and at the previous time step for each axial 
location. When the absolute value of  this difference at 
each axial location was less than 0.01 ' C  over a period 
of  15 min the system was deemed to have reached a 
steady state. The steady-state values of  the tube wall 
temperatures were stored in a separate computer  file 
for use in subsequent calculations. 

Having recorded the measurements corresponding 
to one so-called 'data point '  as described above, the 
electrical power supply was then adjusted to create 
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Fig. 1. Test section, (a) photograph of installed test section, (b) subdivision of test section for evaluating 
the local Nusselt number. Therrnocouples were located at stations 1, 3, 5 and 7-21 at top and bottom of 

tubes. 

progressively higher temperature differences between 
the tube wall and the inlet fluid, thereby providing 
data for various temperature differences at the pre- 
determined velocity. By varying the pump speed, the 
flow velocity was altered to obtain information in the 
Darcy, Forchheimer and the turbulent regimes. The 
D/d ratio was altered by filling either of the two test 
sections having different diameters with glass spheres 
having different diameters. Table 1 shows the ranges 
of the relevant parameters for the data collected in 
this investigation. 

DATA ANALYSIS AND RESULTS 

Calculation of  the local Nusselt number 
In order to evaluate the local heat transfer 

coefficient, the test section of length L was divided 
into 21 parts designated by ALl, AL2 . . . . .  ALi,  

..... AL2~ with centerline locations designated by 

.~'~ as indicated in Fig. 1 (b). The inner surface tem- 
peratures of the heated tube, which are needed to 
calculate the heat transfer coefficient, were obtained 
from the measured outer surface temperature 
readings by solving the controlling differential 

t The local resistance was obtained from an equation relat- 
ing resistance to temperature for type 304 stainless steel. 
The maximum change in the tube wall resistance due to 
temperature variation, and therefore in heat flux, in any test 
was 4.9%. 

equation for conduction in a radial system with uni- 
form heat generation. The differences between the 
inside and outside temperatures were insignificant. 

The heat flux for each ALl was calculated from the 
wattage dissipated in each AL~. The local resistance? 
of the tube wall corresponding to its (measured) local 
temperature was used in this calculation. The energy 
balance equating the total rate of heat input to the ith 
section between the positions Xi_ ~2 and X~+ ~2 to the 
rate of heat absorbed by the water stream in this 
section is given by 

q, = rhcp(Ti+,.2- T~ ,:z), (16) 

where rn is the mass flow rate of water, Cp is the specific 
heat of water, T~_,/2 and Ti+l/2 are the mean tem- 
peratures of the water at the inlet and exit of the ith 
section, and q~ is the rate of convective heat transfer 
in the ith section. 

The quantity q~ equals the difference between the 
rate of heat generation and the rate of external heat 
loss at the ith section and is given by 

q, = 12 R,(AL,) - (q,)I(AL,), (17) 

where I is the electric current flowing through the test 
cylinder wall, Ri is the resistance of test cylinder per 
unit length at the mean cylinder wall temperature 
(Tw)i, and (q0; is the rate of external heat loss per unit 
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Table I. Ranges of experimental parameters 

No. of D d Range of Pr 
Test/Series* data (N) (m x 103) (m × 103) D/d Range of Red (with k;) 

A1 38 18.542 1.242 [4.929 0.73-98. l 2.6-4.9 
A2 52 18.542 2.010 9.229 1.33-313 2.6~4.8 
A3 65 18.542 2.988 6.206 9.19-702 3.7~.9 
A4 36 18.542 3.996 4.641 19.7~50 3.8 5.0 
A5 45 18.542 4.992 3.714 24.6-785 4.1~4.9 
A6 75 18.542 5.962 3.110 41.4-992 3.8 5.0 
A 13 54 18.542 13.467 1.377 74.1-2168 3.9 5.3 
B3 37 15.367 2.988 5.143 9.1-594 2.5-4.9 
B4 40 15.367 3.996 3.846 38.5-981 2.6~4.9 
B5 77 15.367 4.992 3.078 48.4-1134 2.5~.9 
B6 48 15.367 5.962 2.578 19.4-1542 2.6-5.0 
BI3 51 15.367 13.467 1.141 108-3148 2.6~5.2 

*In this column, A represents the 18.542 mm tube and B represents the 15.367 mm tube. The numbers following the letters 
represent the nominal diameters in millimeters of the glass spheres. 

length of  the tuber. The value of (Tw)i was taken to 
be the average value of  the inner surface temperatures 
at the top and bottom of the tube. 

Starting with the measured bulk temperature of  
water at the inlet to the first section, equation (16) 
was applied successively to each of  the 18 sections 
(i = 1,2 . . . . .  18) of  the test cylinder to obtain the bulk 
temperature of  water at the exit of  each section. The 
average value of  the heat transfer coefficient for the 
ith section, h,, was then calculated using the relation 

q, = h , ( r c D ) ( A L , ) [ ( T w ) , -  T,], (18) 

where  7", = [7",. ~, _~ + 7", ~2]/2 and  D is the ins ide d i a m -  
eter of  the tube. 

Using these values of  hi, the local Nusselt number 
for each section was then evaluated from Nu~ = 
h~D/k;., where k~ is the effective thermal conductivity 
given by the following equation [18]: 

k~ = k~)~ ", (19) 

where ). = k~./k, and 17 = 0 .280 -  0.757 log,,t;+ 
0.057 log~o)- 

Identification and elimination 0] the mLved com;ection 
regime 

Since the present study is concerned with forced 
convection in packed tubes, it was necessary to iden- 
tify and eliminate those experimental data in which 
natural convection was not negligible. In the mixed 
convection regime, wherein both natural and forced 
convection effects are important,  the fluid inside the 
tube is thermally stratified due to natural convection 
effects, causing circumferential variation of  the tube 
wall temperature. The greater the circumferential vari- 
ation in temperature, the greater is the importance of  

? The rate of external heat loss from the tube was deter- 
mined by experiments with empty tubes described in ref. [17]. 

natural convection relative to forced convection. The 
quantity (Tw,t,,p- T~ boo where T~,top and Tw,bo~ are the 
measured temperatures of  the top and bottom of the 
horizontal tube wall at a given axial station, is the 
maximum circumferential variation in the tube wall 
temperature and is, therefore, the most sensitive 
measurable index to the relative importance of  natural 
to forced convection. 

The following arbitrary quantitative criterion was 
adopted in the present study to identify those data for 
which natural convection effects are considered to be 
negligible compared to forced convection effects. 
Forced convection was considered to be the predom- 
inant mode of  heat transfer for those experiments in 
which the maximum measured value of  (Tw.top- Tw,bot) 
was less than 2% of  the maximum measured value 
of  (T,~,,op- To), where T~ is the inlet water tempera- 
ture : symbolically, 

( Tw,top - -  Tw.bot )max 
x 100 < 2%. (20) (T~.t,,~ - T 0 )  . . . . . .  

Experiments that satisfied the above criterion pro- 
vided the set of  data upon which the correlations 
determined in this study were based. The data 
obtained in experiments that violate this (con- 
servative) criterion were assumed to represent mixed 
convection data and were disregarded. It is to be 
understood that all data discussed hereinafter come 
from experiments that satisfy the forced convection 
criterion. 

Identification of the thermally jhlly developed region 
In order to identify the thermally fully developed 

region for the present problem of  flow through a 
packed tube with uniform wall heat flux, it is useful 
to consider the analogous situation for a tube with 
uniform wall heat flux with no packing. For  the case 
of  uniform wall heat flux in an unpacked tube, it is 
well known that the bulk temperature Tb rises linearly 
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Fig. 2. Axial variation of wall and fluid temperatures for test A3. 

0.6 

downstream and that in the fully developed thermal 
region, the wall temperature Tw also rises linearly and 
at the same rate as Tb. Similarly, for the present prob- 
lem of internal flow through a packed tube with uni- 
form wall heat flux, the thermally fully developed 
region can be identified by observing how far down- 
stream the measured values of Tw and Tb plot as 
straight lines having the same slopes. 

Figure 2 shows a typical plot of the axial variation 
of measured values of Tw and calculated values of Tb 
obtained in the present study. The difference (Tb-- To) 
is everywhere very nearly proportional to the down- 
stream distance X; thus 

Tb -- To = aX, (21) 

where the value of slope a can be obtained by linear 
regression. For the thermally fully developed region, 
(Tw- To) may be expressed as follows : 

Tw - To = a X  + b, (22) 

where a is as determined by equation (21) and b is an 

intercept. For  all forced convection data obtained in 
this study, it was observed that (Tw- To) was nearly 
constant for X/D >/8. Thus, the value of b was 
obtained by linear regression using the measured 
values of (Tw- To) for X/D >~ 8. 

Subtracting equation (21) from equation (22) 
yields : 

Tw -- Tb = b. (23) 

The value of (Tw- Tb) per equation (23) together 
with the known experimental value of q" permitted 
the evaluation of the constant heat transfer co- 
efficient (h = q"/b) for the thermally fully developed 
region. 

Formulation o f  a correlation hypothesis Jor Nu 
An empirical correlation of experimental data is 

usually developed by adopting an appropriate hypoth- 
esis which consists of a mathematical equation con- 
taining arbitrary constants, and then determining the 
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numerical values of  the constants by fitting the equa- 
tion to the experimental data. The method followed 
here to determine a correlation hypothesis was to 
adopt mathematical forms based on previous experi- 
ence, and then modify these forms based upon physi- 
cal reasoning not heretofore applied. 

In order to correlate the experimental data 
assembled in this study, it was assumed that the 
internal flow through a heated packed tube can be 
conceptually decomposed into two components,  a 
"coarse' component and a "fine' component.  The 
coarse component  is a flow that has a velocity at every 
point in the field. The velocity of the coarse flow 
(which is a fiction because it has a value at every point 
in a porous medium, even though much of  the volume 
comprising a porous medium consists of  solid 
material) is the volume-averaged velocity that is 
defined conventionally in many studies of  flou 
through porous media (e.g. the 'superficial" velocity 
in Darcy flow). The fine component of  flow refers to 
a superimposed meandering flow through the inter- 
stitial spaces between the particles in a porous medium 
and gives rise to the phenomenon called dispersion. 

It was further assumed that the Nusselt number is 
expressible as the product of  three functions, l l , j i  and 
(~, where ./i represents the influence of  the "coarse" 
component  of flow on the heat transfer, 1~ represents 
the influence of  the 'fine' component  of  flow, a n d / ;  
represents the interaction between the coarse and fine 
flow. This assumption can be expressed symbolically 
as follows: 

N u -  ~7,.1~1~. 124) 

The function Jl was taken to be the following gen- 
eralized product form : 

.[i (Re]~, Pr '~') = C 1 (Re'~)(Pr'f'), (25) 

where C> m and h u are constants : and the function.¢i 
was taken to be 

./~ = ('2(Pr'")g(Di), (26) 

where (7~ and ¢,,~ are constants and Di is a dimensionless 
measure of dispersion. The measure of the effect of 
dispersion adopted here is based on the hypothesis 
developed by Fand et al. [16] in connection with their 
study of  forced convection heat transfer from cyl- 
inders embedded in porous media. The reasoning that 
led to the development of  a suitable measure of  dis- 
persion is discussed in the following. 

The measure of dispersion, Di, was known to be a 
function of  Re~ ; however, because of  the complexity 
of  the process, it was anticipated that the deter- 
mination of  an appropriate measure of  dispersion that 
is expressible directly as a function of  Re,~ and also 
possesses certain other requisite properties (to be 

t Note that .13 (ReD~Red)=Ji(D/d) if properties Ik~r the 
coarse and fine flows are assumed equal. 

described presently) would be difficult to achieve. It 
was surmised that a suitable measure of  dispersion 
could be more readily determined in terms of  the pres- 
sure gradient, via the dimensionlessj?iction.[hctorJ~, 
which is, in turn, a known function of  the particle 
Reynolds number Red per equations (8)-(10). 
However,/~,, by itself, does not represent a suitable 
choice for Di for the following reason : if one considers 
a given heated tube (given D) and supposes that the 
tube is successively packed with a series of  porous 
media that are saturated by the same fluid and are 
subjected to the same flow velocity (identical RED), 
but have diminishing particle sizes (d and Red-+ 0), 
then, for such a series of  experiments one would expect 
the Nusselt number to approach a finite limit. But.If, 
increases beyond all bounds as Rea --+ O, and hence./~, 
is not a suitable measure of  dispersion in the function 
,q. However, the quantity.t~Re~ is suitable from this 
point of  view, because this quantity remains finite as 
R<j--+ O. Hence, the measure of  dispersion adopted 
here is 

Di = [i, Re~. (27) 

The next step in formulating the hypothesis was to 
determine a form of the function J~(D/d)? that will 
account lbr the interaction between the fine and coarse 
flows. It can be readily seen that a simple function 
such as (D/d)" is not suitable because (D/d)" exceeds 
all bounds as d---, 0. A power function ofarc tan  (D/d)" 
was adopted here because arctan (D/d)" mono- 
tonically approaches a finite upper bound (~r/2) as d --+ 
0. The aforestated reasoning led to the adoption of  
the following form f o r / \ :  

/'~ = ('~[arctan(D/d)"]',  (28) 

where C~, n and r are constants. 
Taken together, the foregoing reasoning and 

assumptions lead to the following correlation hypoth- 
esis for the Nusselt number : 

n l  p ' q n t Nu = C Re~)(Pr )(.[~Rew) [arctan(D/d) ] , (29) 

where ( ' =  C1('2C~ and p -- ~ +¢,~. 

Development and evaluation qlcorrelation equationx 
The nondimensional parameters ReD, Pr,£~Re,, and 

Nu in equation (29) were evaluated using thermo- 
physical properties at the mean bulk temperature of 
the fluid, Tb,  m =(Tb,i+ Tb,o)/2, where Tb, i and Tb,o are 
the bulk temperatures of  the fluid at the inlet and 
outlet of  the test section, respectively. The values of  
the constants in equation (29) were obtained by an 
optimization procedure described in ref. [17]. 

It may be noted from a comparison of  equations 
(11) and (12) that the five flow parameters (k, Aw, Bw, 
A ~, and B{,,) that characterize the fluid flow in packed 
tubes behave differently below D/d = 1.40 (where they 
are monotonically decreasing with increasing D/d) 
from what they do above Did = 1.40 (where they are 
monotonically increasing with increasing D/d). Since 
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Regime m n C p q r 

F o r 3 < D / d <  15; X/D >~ 8 
Darcy 0.5 0.5 0.5016 0.4067 0.1912 0.9117 
Forchheimer 0.5 0.5 0.2016 0.3671 0.3329 2.1819 
Turbulent 0.5 0.5 0.1853 0.3308 0.3788 2.2416 

For Did = 1.4, 1.1 ; X/D >~ 8* 
Turbulent 0.25 1 0.2146 0.4054 0.5260 -0.6511 

*Adequate data were available only in the turbulent regime. 

the test series A13 and B13 have D/d values less than 
1.40, and hence their flow characteristics differ from 
the others, it was anticipated that the correlation con- 
stants for these two test series would differ from the 
others, and so were treated as a separate group. 

An interesting anomaly was observed for the test 
series with D/dof2.578. It was found that the spherical 
particles arranged themselves in portions of the tube 
in a regular helical pattern leaving a clear hole through 
the center of the helix. The tube was packed a number 
of times and it was found that the depth of the holes 
through its center varied each time. It was concluded 
that the packing method did not result in random or 
repeatable packings for D/d = 2.578 and hence, the 
results of this test series were excluded from further 
consideration. 

The optimum numerical values of the constants in 
equation (29) are listed in Table 2. Figs 3-5 are plots 
that show the performance of equation (29) in the 
Darcy, Forchheimer and turbulent regimes for 
Did > 1.40. In these figures, points that fall on the 
'main diagonal' line through the origin with a slope 
equal to one indicate perfect agreement between Nuc,~ 
and Nuex p. Sample sets of data, selected at random 
fi'om each relevant data subset, are plotted in these 
figures because these sample data are sufficient for the 
present purpose and are not so numerous as to render 
their graphical representations confusing. 

Table 3 lists the errors incurred by equation (29) 
for fully developed flow (X/D >1 8) for the nine tests 

Table 3. Errors incurred by equation (29) 

Regime Em(%) Emd(%) Ema×d(%) 

F o r 3 < D / d <  15and 
X/D >~ 8 
Darcy - 0.44 6.25 15.7 
Forchheimer -2.55 7.72 17.9 
Turbulent - 1,82 7.75 18.2 

For D/d = 1.4, 1.1 ; X/D >~ 8 
Turbulent(1.4) 2.85 9.61 36.5 
Turbulent(1.1) -3.57 22.4 87.8 

with random packing (3 < Did < 15) and for the two 
tests with deterministic packing (Did = 1.4, 1.1). The 
magnitude of the mean error is less than 3.6% in all 
cases; and the mean deviation is between 6 and 10% 
for all tests except for Did = 1.1, for which it is 23%. 
Further, the maximum deviation is nearly constant 
(between 15 and 18%) for the random packings and 
rises to 37% for D/d = 1.4 and to 88% for D/d = 1.1. 
An explanation for this pattern of rising maximum 
deviations (and associated mean deviations) follows. 

The explanation is based upon the physical fact, 
which becomes obvious if one considers the pattern 
of fluid flow, that the local heat transfer coefficient in 
a tube packed with spheres must be a function that is 
periodic in both the axial and circumferential direc- 
tions ; further, both the wavelength and amplitude of 
this function must increase with a decrease in D/d. 
Now, the surface temperature measurements made in 
the present study, and therefore the Nusselt numbers 
calculated therefrom, constitute finite (yet adequate) 
random samples taken from infinite sets. The 
maximum (and mean) deviations listed in Table 3 
are consistent with the physical fact that the periodic 
function, which represents the local Nusselt number, 
is characterized by increasingly larger amplitudes as 
Did approaches unity. 

APPLICATION TO HEAT TRANSFER 
ENHANCEMENT 

This section focuses on the enhancement of heat 
transfer achievable by packing tubes with glass 
spheres and the associated friction power require- 
ments. The heat transfer enhancement achieved using 
packed tubes will be compared to the use of typical 
twisted tape inserts and longitudinal integral fins 
under the constraint of constant pumping power. 

Heat transfer and flow-friction character&tics in packed 
tubes 

Kays and London [19] have developed a consistent 
treatment of basic heat transfer and flow-friction data 
for compact heat exchanger surfaces, so as to avoid 
the confusion often encountered with a large number 
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of arbitrarily defined parameters. Following their 
method of treatment, the basic heat transfer and flow- 
friction performance data for packed tubes are pre- 
sented in the following forms : 

St Pr 2 ~ = 4~I(ReD), (30) 

/ =  q52(Re~), (31) 

where St = Nu/(ReDPr) is the Stanton number, 
f =  P'De)/2pu 2 is the flow-friction factor, ~b~ and ~b2 
are functions of ReD. In this context, the fluid thermal 
conductivity, kr, is used in the evaluation of Pr and 
St. 

The heat transfer and flow-friction performance 
curves for packed tubes per equations (30) and (31) 
are presented in Figs 6 and 7 for the turbulent regime. 
The correlation equation (29) developed in this study 
is used to generate these plots. Similar plots can be 
obtained for Darcy and Forchheimer regimes and are 
presented in ref. [17]. Figures 6 and 7 show the vari- 

ation of StPr e:3 a n d f a s  functions of ReD and D/d. It 
can be observed that the rate of heat transfer and the 
friction factor increase with increasing D/d for a given 
Rer). 

Et~aluation q[heat tran,ylbr enhancement 
An evaluation of the heat transfer enhancement 

achieved by packing a tube with spheres may be made 
by comparing the heat transfer characteristics of the 
packed tube with that of an unpacked smooth tube 
(relevant parameters designated by subscript s). The 
Nusselt number, Nu~, and the friction factor, Ji~, for 
fully developed laminar flow in smooth tubes with 
uniform wall heat flux are given by [20] 

Nu~ = 4.364; ./i~ = 16/Re~. (32) 

For fully developed turbulent flow in smooth tubes 
with uniform wall heat flux, the Nusselt number is 
given by [20] 
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(f tJ2) (Res - 1000) Pr 
Nut~ = 1 + 12.7(.ft=/2) °5 (Pr 2'3 - 1) '  (33) 

where the friction factor ft= is given by 

.f~ = [1.58 ln(Res) - 3.28] z (34) 

Using equations (29), (32) and (33) the enhance- 
ment ratio (ratio of  Nusselt number for a packed tube 
to that of  an unpacked smooth tube) can be calculated 
for laminar and turbulent flow. Figures 8 and 9 show 
the enhancement ratios of  packed tubes with D/d of  
3.110 and 9.229 under the constraint of  equal pumping 
power for laminar and turbulent flows, respectively. 
These figures show that the enhancement ratios 
achieved with Did = 3.110 is about  25% more than 
that achieved with Dtd= 9.229 for laminar flow and 
75% more for turbulent flow. Also, the enhancement 
achieved using packed tubes with D/d of 3.110 is two 

to seven times more than that of  unpacked tubes for 
laminar flow and two to two and a half  times more 
for turbulent flow. 

In order to compare the heat transfer enhancement 
achieved using packed tubes with that of  an internally 
finned tube (FT) and a tube with twisted tape inserts 
(TT), the following typical geometric parameters for 
the internally finned tube and the tube with twisted 
tape inserts are used : 

FT TT 

Number of fins = 8 Tape thickness = 0.045D 
Fin height = 0.2D Twist ratio y = HID = 2.5* 
Fin thickness = 0.04D *H = axial distance for 180 ° 

twist 
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Figure 8 shows the enhancement ratio obtained 
with equal pumping power for Test Series A2 
(D/d = 9.229), Test Series A6 (Did = 3.110), FT and 
TT for laminar flow. The details of  the calculations 
are presented in ref. [17]. It can be seen that the 
enhancement ratios of  the packed tubes are sub- 
stantially greater than FT for Re~ > 300. The enhance- 
ment ratios of  the packed tube with D/d of 3.110 
and TT are nearly equal, but TT performs better for 
Did > 3.110. Figure 9 shows the enhancement ratio 
obtained with equal pumping power for two different 
packings, FT and TT for turbulent flow. It can be 
seen that the packings do not provide any substantial 
advantage over FT and TT. 

From the above observations, the following con- 

clusions can be drawn regarding the enhancement of  
heat transfer achieved using packed tubes for equal 
pumpin9 power : 

(1) A packed tube having a lower D/d provides 
more heat transfer enhancement than one with a 
higher Did for D/d > 1.40 

(2) The heat transfer enhancement achieved using 
packed tubes can be two to seven times more than 
that of  unpacked tubes for laminar flow and two to 
two and a half  times more for turbulent flow. 

(3) For  laminar flow, the enhancement ratio of  
packed tubes can be two to four times more than that 
of  finned tubes and nearly the same as that of  tubes 
with twisted tape inserts. 

(4) For  turbulent flow, the enhancement ratio of  
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packed tubes is nearly the same as that of finned tubes 
and tubes with twisted tape inserts. 

CONCLUSION 

It has been demonstrated that equation (29), with 
appropriate constants for Darcy, Forchheimer and 
turbulent flow, represents the mean values of Nu 
obtained in this study for D/d > 1.40 and X/D > 8 
(where the flow is thermally fully developed) with a 
degree of accuracy that is deemed acceptable for 
design purposes. This empirical correlation equation 
is based upon a hypothesis that regards the flow in a 
porous medium to be the superposition of a 'fine' 
component upon a 'coarse' component, and takes into 
account the effect of the wall and the influence of 

dispersion upon heat transfer for the geometry con- 
sidered herein. It has been found that the dimen- 
sionless measure of dispersion, Di, utilized in a pre- 
vious study [16] of (external) forced convection heat 
transfer from isothermal cylinders embedded in 
porous media is applicable to the present geometry as 
well. 

The results of this study show that for equal pump- 
ing power the method of packing tubes with spheres 
can provide heat transfer enhancement two to seven 
times that of unpacked tubes for laminar flow and 
two to two and a half times for turbulent flow. For 
laminar flow with equal pumping power, packed tubes 
can provide greater heat transfer enhancement than 
finned tubes and can equal the enhancement achiev- 
able with twisted tape inserts. For turbulent flow with 
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equal  p u m p i n g  power ,  packed  tubes  can equal  the 
heat  t ransfer  e n h a n c e m e n t  achievable  with f inned 
tubes  and tubes  with twisted t ape  inserts.  
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