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Ultrasonics has been used for the determination of the mechanical properties of 
oriented semicrystalline polymers through time-of-flight measurements of elastic 
waves propagating in various directions within the material. Whiile being nonde- 
structive, such a method allows one to obtain more mechanical moduli with a better 
accuracy than the conventional tensile tests, especially regarding the shear prop- 
erties and the Poisson’s coefficients. Until now, the approach used to interpret the 
data was approximate and not rigorous. We present here a self-consistent rigorous 
approach for interpreting time-of-flight data based on the group velocity including 
allowance for lateral displacement of the transmitted beam. Results are presented 
for roll-drawn PET with various draw ratios. These samples are considered to have 
transversely isotropic symmetry. For the Young’s moduli, comparisons are made 
with conventional tensile tests and the differences observed are interpreted in terms 
of viscoelastic effects considering both the amorphous and crystalline phases. 

1. INTRODUCTION 

ne approach for the production of polymers with 0 high mechanical performance consists in orient- 
ing the chain structures by drawing or extrusion in 
the solid state. When an unoriented, isotropic, sheet 
of polymer material is oriented, it becomes elastically 
anisotropic due to orientation of molecular chains. 
Several techniques have been developed to assess ori- 
entation at the microscopic level namely, optical bire- 
fringence, X-rays, laser Raman spectroscopy and po- 
larized infrared techniques ( l ). While being important 
in fundamental studies in order to identify the mech- 
anisms involved, these methods have several draw- 
backs: they do not yield directly mechanical properties 
and/or require expensive or complex instrumenta- 
tion. There is a great need for better adapted testing 
procedures and, in particular, for nondestructive 
methods. 

For this purpose, an ultrasonic technique has been 
developed and applied for characterizing orientation 
and evaluating the different components of stiffness 
properties (2, 3). The method consists in measuring 
the time of flight of elastic waves that propagate in 
various directions within the material. By making a 
sufficient number of measurements for different prop- 
agation directions, it is possible to determine the dif- 
ferent stiffness components. While being nondestruc- 
tive, such a method allows one to obtain more 
mechanical moduli with better accuracy than using 
conventional tensile tests, especially regarding the 
moduli related to shear properties (4). However, a de- 

tailed mapping of mec hanical anisotropy and the com- 
putation of stiffness constants are quite involved and 
require a nonlinear least-square fit of the data to the 
predictions of a model for wave propagation. Although 
the procedure has been well developed and applied 
successfully to various anisotropic materials such as 
oriented polymers (3) and fiber reinforced composites 
(5), several difficulties still remain (6). 

The first is related to the interpretation of time-of- 
flight data whether the technique used is water im- 
mersion or direct contact method or laser-generated 
ultrasound. Until recently, most reported works ne- 
glected the fact that time-of-flight measurements are 
related indeed to the group velocity (energy flux) while 
using at the same time a formalism based on phase 
velocity (wave front). Since these velocities in general 
deviate from each other in anisotropic materials, the 
use of a model based on phase velocity to determine 
the elastic constants raises serious questions about 
the correctness of the technique. When this fact is 
properly accounted, a tedious procedure implying nu- 
merical derivatives with respect to the wave normals is 
used (7, 8). For water immersion only, it was demon- 
strated (4) that the time of flight associated with the 
energy flux (i.e. to the group velocity) is equivalent to 
the one linked to the undetectable wave front (i.e. to 
the phase velocity) emerging at a different point, pro- 
vided that an appropriate reference path be chosen. 
Such an equivalence is certainly not possible with the 
above other techniques. Since in a recent paper (91, 
closed-form analytical relations were derived for group 
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velocity, there is no reason to rely on an approximate 
model for the determination of the elastic constants 
and a more rigorous approach is readily feasible. 

A second difficulty associated with the immersion 
technique is the proper handling of the lateral dis- 
placement of the transmitted beam. It appears natural 
to follow this displacement by moving the receiving 
transducer to capture the maximum energy. Actually, 
when this is neglected and the transducer is fixed, a n  
error is made on the time of flight measurement. This 
may result in an  underestimation of some elastic con- 
stants attaining 30% for the axial Young's modulus. 
With oriented polymers, this underestimation may 
yield to an apparent good agreement between ultra- 
sonic and tensile measurements, which is suspicious 
since high frequency ultrasound should give higher 
modulus according to the time-temperature equiva- 
lence principle of viscoelasticity. Recognizing the im- 
portance of beam displacement and circumventing 
the task of following the beam, a double-through- 
transmission method has  been proposed (4) and is 
based on the reciprocity of wave propagation. How- 
ever, this approach is less useful for roll-drawn ori- 
ented polymers since the two faces have to be pre- 
cisely parallel. The wave amplitude is also quite 
reduced after double propagation in the case of 
strongly attenuating materials. The displacement of 
the beam is therefore an  important factor that is an- 
alyzed and properly taken into account in this paper. 
Finally, still another concern addressed in this paper 
is the robustness of the algorithm to recover the stiff- 
ness constants from the time-of-flight data (6, 101. 

We present a self-consistent approach based on 
group velocity formalism for analyzing time-of-flight 
data. The formalism takes into account the lateral 
displacement of the transmitted beam and the receiv- 
ing transducer. We present also a robust algorithm for 
the recovery of elastic constants from the time-of- 
flight data. Results are presented for the roll-drawing 
of a semicrystalline poly(ethy1ene terephthalate) (PET) 
in the solid state of various draw ratios. For the 
Young's moduli, comparisons are made with tensile 
tests and the interpretation for the differences is given 
in terms of the time-temperature equivalence princi- 
ple of viscoelasticity considering both the amorphous 
and crystalline phases. 

Fig. 1 .  Geometry used for  an 
anisotropic material. 

2. THEORY OF ANISOTROPY 

Phase and Group Velocities 

Basically, ultrasonics involves the reverberation of a 
short ultrasonic pulse propagating in the materials 
from which times of flight or delays between pulses 
can be measured. For the simple case of isotropic 
materials, knowledge of the sample thickness allows 
one to obtain the velocity, u, of the wave and the elastic 
modulus, M ,  is deduced from the relation M = pu2, 
where p is the density. This can be made for both 
longitudinal and transverse waves and yield the two 
independent constants characterizing the isotropic 
material. The derivation of the elastic moduli from the 
time-of-flight measurements for anisotropic materials 
such a s  oriented polymers is, however, more involved. 

Let us first consider the geometry in Fig. 1 ,  with the 
axis 3 in the draw direction. In general, components of 
the stiffness tensor are made of 21 independent elastic 
constants but this number is greatly reduced when 
there are some symmetries in the material (1  1). The 
case of thin slabs or biaxial orientation by drawing 
require 9 independent stiffness constants, corre- 
sponding to orthotropic symmetry. The relation be- 
tween phase velocities up and elastic constants of the 
material is given by the Christoffel equation: 

where 6ik is the Kronecker delta, p is the density of the 
material and components Tuc for the orthotropic sym- 
metry are (9, 12): 

r l l  = n?Cl1 + n3266 + n g ~ , ~  

r33 = R ? C , ~  + n ; ~ , ,  + ngc,, 

rI3  = nIn3(Cl3 + C5,) 

r12 = n,n2(C,, + c66) (21 

with C,J, the components of the stiffness tensor (using 
collapsed indices I ij and J 5 k l )  and the n ,  the 
direction cosines of the normal to the wave front. For 

1 

3 

1834 

2 H  
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a n  arbitrary direction in the material, the cubic poly- 
nomial in indicates that in general, three modes can 
propagate: a quasi-longitudinal wave (QL mode), a 
quasi-transverse wave (QS mode) and a pure trans- 
verse wave (PT model. Here, the plate is considered to 
be isotropic in the plane perpendicular to drawing, 
whereby only five stiffness constants are needed cor- 
responding to transversely isotropic symmetry. In any 
case, different measurements in the transverse plane 
will allow direct validation of the approximation. For 
that symmetry, the following relations hold: 

CZZ = Cl,  

c55 = c44 

c23 = c13 

c12 = c l l  - 2c66 ( 3 )  

In principle, phase velocity measurements in different 
directions of the material with the requirement that 
Eqs 1-3 must be satisfied would allow to determine 
the independent components of the stiffness matrix 

Once the five stiffness components are known, 
seven engineering constants usually measured by 
static methods can be obtained. Primarily defined in 
terms of the compliance matrix S,J = [CJ', these 
constants are (1, 12): the axial and transverse Young 

c,. 

moduli: 

1 C E = _ =  
s 3 3  G I  - c:, 3 -  

1 C E = _ =  
- s l l  c33cll - cf3 

c = (CI, - C12)[C33(Cll + C12) - 2cL1 
the shear moduli: 

and Poisson's ratios: 

(41 

( 5 )  

In order to determine the stiffness components from 
time-of-flight measurements, different approaches 
can be envisaged that have incidence on the nj's in Eq 
2. The simplest approach is to propagate waves in 
symmetry planes 1-2 and 1-3. For propagation in the 

isotropic plane 1-2, appropriate n,'s in Eq 2 yield the 
simple equations: 

relating phase velocities to the elastic constants and 
being independent of the angle with respect to axis 1. 
For propagation in the anisotropic plane 1-3, Eq 2 
yields the expressions (8, 9): 

the upper and lower signs being, respectively, for QL 
and QS waves, with: 

a = Cll+cos28p + C3,3+sin28p 

b = [(C11-cos28, - C,3_sin28,)2 

+ (2CI3+cos 8,sin 8p,3211'2 (9) 

d = c6,cos2~,  + ~ , , s i n ~ 8 ,  

C l l i  = c11 -+ c44 

c331- = c33 5 c44 

c13+ = c13 + c44 

and where the angle 8p is the wave propagation direc- 
tion with respect to the axis 1. Given the elastic prop- 
erties, phase velocities of all three modes are easily 
determined for a given direction eP. 

However, it is well known that the wave propagation 
direction does not generally coincide with the direc- 
tion of energy flux for anisotropic media, and also that 
their respective beams do not propagate with the same 
velocity. This is of importance considering the fact 
that indeed, the apparatus involved with ultrasonic 
techniques is more likely sensitive to energy flux than 
to the wave front. The wave front has  the phase veloc- 
ity up as  already discussed and the energy flux prop- 
agates with the so-called group velocity ug. For any 
three modes QL, QS, and FT, the phase velocity can be 
seen as the projection of the group velocity onto the 
direction of wave propagation. Defining the paths of 
wave front and energy flux in reference to axis 1 with 
angles 8,, 0,. respectively, we have the relation ( 12): 

U, = L ~ ~ c o s ( O ~  - 8,) (10) 

It should be noted that since we are only considering 
propagation in symmetry planes both paths are lo- 
cated in the incidence plane. For the transversely iso- 
tropic case of propagatlion in the plane 1-2, propaga- 
tion of the wave front and energy flux coincide and the 
distinction has  to be made only in the anisotropic 
plane 1-3. In this plane, wave front and energy flux 
coincide however for propagation along principal axes 
1 and 3. 

If an additional relation involving 8, exists, Eq 10 
could be used to relate ultrasonic velocity measure- 
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ments to phase velocities given by Eqs 8, 9. However, 
until very recently, no such analytical relation was 
available. Most workers in the field neglected the prob- 
lem, and those who didn't relied on a tedious proce- 
dure that implies numerical derivatives with respect 
to the n,'s (7, 8). In a recent paper (9), closed-form 
analytical relations were given for 0, and u, in terms of 
the stiffness constants. In replacement of Eqs 8, 9, 
these expressions are: 
uQL.QS = 

9 

- (C:,- t 2bCll+)cos28p - b2I2 
( 1 1 )  8pb2cos28pcos20g(a 5 b)  

where 

tan 6, = tan Qp 

(12)  

with a and b taken from Eq 9 and the upper and lower 
signs being, respectively, for QL and QS waves. One 
notices that the correspondence between ug and 0, is 
not straightforward, but rather made through the 
wave front angle OP. On the contrary, the relation be- 
tween us and Og for the PT wave is simply: 

with the angle Op related to 0, by: 

tan 0, = tan e (5) 
c66 

Therefore given the elastic properties, group velocities 
of all three modes are determined for a given direction 
0,. 

Representation of Anisotropy 

For symmetry planes 1-2 and 1-3, anisotropy prop- 
erties of the material can be shown using a represen- 
tation based on velocities in all directions. For the 
purpose of illustration, phase or group velocities will 
be shown assuming typical properties for oriented 
polymer materials, as  given in Table 1. A s  discussed in 
the next section, a n  immersion technique will be used 
and therefore, propagation of shear waves in the ma- 
terials will be effective through mode conversion that 

Table 1. Set of Physical Properties Used for Calculation in 
the Example. 

ProDerties Values 

Density 970 kg/m3 
c, 1 5 GPa 
c33 15 GPa 
c 4 4  1 .O GPa 
c66 1.5 GPa 
c13 3 GPa 

occurs a t  the sample surface. However, mode KT, 
which is polarized perpendicularly to the plane of in- 
cidence, cannot be excited by mode conversion. There- 
fore, in the remainder, only L = QL and S 5 QS modes 
will be considered. Provided measurements are made 
in both planes 1-2 and 1-3, a complete characteriza- 
tion will be possible since all five stiffness constants 
are involved for these two modes (see Eqs 7-12). 

For the set of properties in Table 1 ,  F'ig. 2 shows the 
representation for phase velocity up. The four curves 
are labeled for the mode (L or S) and the symmetry 
plane (1-2 or 1-3) and plotted values are inverse of 
velocity, that is slowness sp = l / u p ,  but normalized 
with the acoustic velocity in water u, = 1485 m/s .  
Such a figure should not be interpreted in terms of a n  
x-LJ graph but more like a polar plot. Therefore, the 
horizontal axis corresponds to angle direction Op = 0" 
and principal axis 1 while the vertical axis corre- 
sponds to Op = 90" and either principal axis 2 or 3 
depending on symmetry plane. For a given angle 0, 
lying between 0" and go", the length of the joining 
vector from the origin to the corresponding point in 
the curve gives the slowness value sp for the chosen 
mode and symmetry plane. Three reasons can be 
given for using slownesses instead of velocities: 1) 
propagation models naturally involve the wavenum- 
ber k = o / u p ,  2) simultaneously representing L and S 
waves, emphasis is made on the more complicated 
behavior associated with S-wave (lower velocity) and 
consequently, 3 )  least-square fits for extracting elastic 
constants from slownesses should be more stable. 

For plane 1-2, the circular patterns indicate that 
phase velocities for L and S modes are constants, 
therefore corresponding to transversely isotropic sym- 
metry. For plane 1-3 and L mode, slowness a t  Op = 0" 
has the same value as  for plane 1-2 and decreases 
upon reaching ep = 90" or principal axis 3,  in relation 
with a velocity that increases with higher modulus. 
For the S mode, a more complicated behavior is ob- 

FUJ. 2. Polarplot of slowness sp = I / u p  us  OJor L a n d  S modes 
in symmetry planes 1-2 a n d  1-3 using the set of properties in 
Table 1 .  
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served, and, in contrast to L mode, the value at ep = 0" 
is different from the one in plane 1-2. This can be 
expected since they actually correspond to different 
polarizations. 

Now, using Eq 12 with the data of Table 1 for sym- 
metry plane 1-3, we compute the direction of energy 0, 
as a function of wave front direction Op, and this is 
shown in Fig. 3. One can observe a large effect, except 
for the principal axes 1 and 3 corresponding to ep = 0" 
and go", for which wave front and energy flux direc- 
tions coincide. The departures attain 35" for L waves 
and 50" for S waves and a crossover is observed for S 
wave near OP = 35". Moreover, the sigmoid behavior for 
the S wave is indicative of a so-called cuspidal region 
in the material with an angular range 0, between 20" 
and 65". That is, an ultrasonic beam within this range 
of angles may correspond to any of three different 
wave front directions. 

Such a region is more readily observed in the slow- 
ness representation of Fig. 4, which shows the polar 
plot representation for group velocity us as a function 
of the angle 0, for the given set of properties in Table 1. 
Here again, the four curves are labeled for the mode (L 
or S )  and the symmetry plane (1-2 or 1-3). The length 
of the joining vector from origin to a point on a given 
curve indicates the slowness sg = 1 lug ,  normalized to 
the acoustic velocity in water. Behavior for group ve- 
locity shown in Fig. 4 is typical of what should be 
observed with the ultrasonic beam in oriented poly- 
mers. As noted for the isotropic plane 1-2, the circular 
patterns indicate that the velocities for the L and S 
modes are constant. For the plane 1-3 and L mode, 
slowness at 0, = 0" has the same value as for plane 1-2 
and decreases (velocity increases) upon reaching 0, = 
90" or principal axis 3. For the S mode, a more com- 
plicated behavior is observed, and one notices the 
cuspidal region as already discussed, for 0, lying be- 
tween 20" and 65". That is, energy flux propagating in 
a given direction within that range possesses a group 

0 15 30 45 60 75 90 

Fig. 3. Direction of the beam energy 0, as a function of wave 
front direction 6, for both L and S waves in symmetry plane 
1-3. 

n 

e4 

>$ 0.6 

c 0.3 
L 
W 

0.3 

1 ,  , , , , 1, , , ,s:;, , \I 
0.0 

0.0 0.3 0.6 0.9 1.2 1.5 

v,/v (1) 
Q. 4. Polarplot of slowness sg = 1 /vg us OJor L and S modes 
in symmetry planes 1-2 and 1-3 using the set of properties in 
Table 1. 

velocity which is different depending on which one of 
the two or three wave fronts it is associated with. 

Using an immersia'n technique, this multiplicity of 
roots for a given direction of energy is somewhat elim- 
inated since the wave front direction in the material is 
connected with incident beam by the Snell-Descartes 
law. Therefore, a convenient way of representing the 
group velocity is shown in Fig. 5 for the given set of 
properties in Table 1 .  Instead of using the angle 0, in 
this Figure, the mapping of slowness s, = 1 /vg asso- 
ciated with energy is made with the corresponding 
wave front direction Op. Here again, the four curves are 
normalized with the acoustic velocity in water and 
labeled as before. For a direction OP. Fig. 5 allows one 
to obtain the group velocity of the energy, but propa- 
gating in a direction Og given by Fzg. 3. 

1.5 

1.2 

n 
rr) 0.3 
e4 
\ 

v 

3 
3 0.6 > 

0.3 

0.0 
0.0 0.3 0.6 0.9 1.2 1.5 

v d v  (1) 
F q  5. Polarplot of slowness sg = 1 /v, us OJorL andS modes 
in symmetry plants 1-2 and 1-3 using the set of properties in 
Table 1 .  
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V 
W - - 

5. ULTRASONIC TECHNIQUE 

Immersion Technique and Data Analysis 

The generation/detection of an ultrasonic wave in a 
material may be accomplished in different ways by 
direct contact, water immersion, and laser genera- 
tion/detection. We are using here an immersion tech- 
nique, whereby the transducers and the sample are 
submerged in water, acting as the coupling medium 
for ultrasound. 

In Fig. 6, the water immersion tank is shown with 
the sample placed on a turntable that can change its 
orientation with respect to the ultrasonic beam. 
Hence, measurements can be made at different angles 
8, in either symmetry plane 1-2 or 1-3. By application 
of Snell's law, this arrangement permits the genera- 
tion of both longitudinal and shear waves in the sam- 
ple. By making a sufficient number of time-of-flight 
measurements over various orientations, one may de- 
termine the stiffness constants. The transducer T 
used for insonification produces a pulse of 3 MHz 
center frequency with a flat profile of diameter 1 cm, 
aligned with the center line of the sample. The trans- 
ducer R, similar to T and used for detection of the 
signal, is also allowed to move laterally, i.e. along a 
direction perpendicular to the line of insonification. As 
mentioned previously, this is to follow the path of the 
acoustic beam. The signals received are digitized at a 
100 MHz sampling rate and then averaged 10 times. 
The temperature in the bath is monitored and con- 
trolled with variations smaller than +5"C, making the 
sound velocity in water to vary between 1480 and 
1490 m/s. Therefore, a fixed value u, = 1485 m / s  is 
adopted for use in the calculations with an error of 
less than 0.4%. The method is estimated to be reliable 
for samples of flat profiles with thickness in the range 
from 1 to 15 mm to ensure sufficient separation of 
echoes. 

Similarly to the propagation of light, when the wave 
is incident at an angle 0, on a surface, part of the wave 

L V 
W V 

is reflected away from the surface and part is refracted 
inside the second medium. But the difference with 
optics is that oblique incidence, 0, # 0, gives rise to 
mode conversion. As illustrated in Fig. 7, starting with 
an L wave (the only mode permitted in water), the 
presence of an interface produces an L wave and an S 
wave propagating in the second medium with different 
directions. For a slab with parallel faces, part of both 
wave modes are reflected at the second interface and 
part is transmitted (after conversion for the S wave) 
into an L wave in water. Only for that geometry, both 
outgoing beams are parallel to the incident one, but as 
already mentioned, transducer R has to be moved 
laterally to follow the path of respective beams. Snell's 
law of optics can still be used to obtain a relation 
between incident wave and wave front (phase) of both 
L and S modes propagating in the material. The ex- 
pressions are: 

sin Ow = sin 0 : ( 3  

sin e, = sin 0 ; ( 2 )  (15) 

In view of Eq 15, two remarks can be made. First, 
when u, < up as the case for L waves on either sym- 
metry plane of the example, the whole range of prop- 

Fig. 6. Schematic diagram of the ultrasonic experiment: top 
view of transducers T and R together with the sample im- 
mersed in water. The sample may be rotatedfor insonifkation 
at d@ferent angles %,. 

Fig. 7. The concept of mode conversion and refraction by 
Snell's law for ultrasonic waves: a] normal incidence and b) 
oblique incidence. 
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agation angles in the materials 0" 5 Op 5 90" is easily 
achieved using an immersion technique with: 

(16) 

Second, when v ,  2 up as for S waves, measurements 
over the whole range 0" 5 0, 5 90' allow one to span 
only a portion of the slowness curves. The right-hand 
side of Eq 15 restricted to be <1.0, the range of prop- 
agation angle in the materials is given by: 

(17) 

Also using an immersion technique, the incidence an- 
gle Ow fixes direction of L and S wave fronts (phase) in 
the materials and the signals received that are asso- 
ciated with energy [group) are interrelated to the wave 
fronts by Eqs 1 1, 12. This supports the use of slow- 
ness curves sg as in Fig. 5, scanning the phase angle Op 
for representing ultrasonic measurements. 

With the objective of recovering stiffness constants 
from the above expressions, velocity or, more pre- 
cisely, time-of-flight data are needed for various prop- 
agation angles in the material. For that purpose, the 
sample is insonified by short ultrasonic pulses of cen- 
ter frequency 3 MHz and the time of arrival of the 
pulses at transducer R are measured. In F'ig. 8, a ray 
path representation for the time of flight of either L or 
S wave is presented for symmetry plane 1-2 or 1-3. As 
a reference, we will consider the time of flight, t', be- 
tween T and R in the absence of the sample. Hence, 
measurements of time of flight, t ,  are performed with 
the sample at different angles 0, after a lateral dis- 
placement of transducer R by a distance 6 to capture 
the maximum of the beam energy. The center of the 
ultrasonic beam is followed by maximizing the enve- 
lope of the received signal. In view of Fig. 8, the time of 
flight difference, t - t', can be related to group velocity 
by the relation: 

f i g .  8. Ray path representation for 
time offlight of either L or S wave 
in symmetry plane 1-2 or 1-3. 

"W 

or more explicitly, in terms of the sample thickness, e ,  
and the angles Ow, 6$ as: 

Also, Fig. 8 allows cine to find an expression for the 
lateral displacement necessary for detection as: 

6 
e - = cos Owtan 0, - sin Ow (20) 

Equations 19 and 20 are valid either for L or S wave 
and symmetry plane 1-2 or 1-3, no matter if 0, is 
smaller or larger than 0,. The remaining quantities to 
be evaluated in order to use the above equations are 
the sample thickness e and density p. which can be 
obtained in a standard way. 

Inversion Algoritluu 

The above relations are the necessary ingredients 
for the inverse problem at hand, consisting of recov- 
ering the elastic constants from the measurement 
data. By making sufficient time-of-flight measure- 
ments over a range of orientations in the symmetry 
planes 1-2 and 1-3, one can proceed to optimally 
recover the stiffness components. 

First, measurements in isotropic plane 1-2 should 
allow to obtain stiffness constants C,,  and C,, accord- 
ing to Eq 7. In this plane, propagation of the wave front 
and energy flux coincide that is, Og = O,, and ug = up. 
Therefore, substitution of Eq 15 into Eq 19 yields a 
simple relation between measurement set 8, - At and 
velocity up for either L or S wave in the form: 

while the angle Op is obtained from Eq 15. In addition, 
for that plane, the measurement set 0, - 4t in Eq 21 
should give a constant value for up independent of 
propagation direction OP. Using the slowness repre- 
sentation for the N measurements at different angles, 
circular patterns should be obtained for both L and S 
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modes and therefore allowing validation of the as- 
sumption of transversely isotropic symmetry. Once 
this is verified apart from random deviations, the N 
measurements at different angles 8, for each mode are 
all being used to evaluate the stiffness constants us- 
ing: 

Doing this, the relative error, ru, associated with ran- 
dom noise on the velocities results in an error, r,, for 
the stiffness constants C,, and C,, given by: 

Second, measurements in plane 1-3 should allow one 
to obtain the stiffness constants C,,, C,,, and C13. The 
problem is to evaluate the remaining constants from a 
best-fit of N measurements Ow - At with the above 
model for propagation. A least-square fit of the N data 
points to the model consists in minimizing the sum of 
squares of the deviations between the slownesses of 
experimental and calculated group velocities, respec- 
tively, ut; and ui, and making adjustable the unknowns 
C,,, C,,, and C,,. This can be written as: 

where the sum includes measurements from both L 
and S waves. However, the model described above 
depends nonlinearly on C,,, C,,, and C,, and there- 
fore, the minimization must proceed iteratively. Given 
trial values for the parameters, the procedure im- 
proves the solution at each iteration and is repeated 
until Eq 24 stops decreasing. For this purpose, the 
downhill simplex method of Nelder and Mead is used 
here, as being of more general usage and more robust 
with respect to convergence (13). 

Therefore, at each iteration, vi of either L or S modes 
is computed through the steps of: 1) solving Eqs 8, 15 
for OP and up given the angle Ow, 21 computing Og from 
Eq 12 and 3) evaluating uC, from E q  10. Also, the mea- 
sured time of flight At is converted into u5; using Eq 19. 
Hence, the sum of Eq 24 is evaluated and serves as a 
function of merit for estimating a better trial solution 
of stiffness constants for the next iteration. We note 
that due to Snell’s law in Eq 15, it may happen during 
the iterative process that the trial solution C,J prevents 
the calculation of ui associated with the measurement 
set 8, - At. Since a measurement has actually been 
performed at this angle, this indicates that the solu- 
tion C,J is wrong at the given iteration and has to be 
changed drastically to allow calculation of v:. There- 
fore, a penalization technique is proposed where a 
sufficiently large number associated with the mea- 
surement set is introduced in E q  24. This allows the 
algorithm to improve the solution for the next itera- 
tion. Also, the algorithm was found to be generally 

robust for any reasonable choice of initial parameter 
set. 

The remaining aspect of the problem is the estima- 
tion of the errors or uncertainties in obtaining the 
stiffness constants C,,, C,,, and C,, from N measure- 
ments in plane 1-3 using the above procedure. The 
best way to make these estimates is through Monte 
Carlo simulation of synthetic data sets (13). The start- 
ing point is to consider the parameters obtained from 
the experimental data set as true and then evaluate 
the noise level associated with measurements, typi- 
cally assuming a gaussian white noise distribution. 
Using computer-generated random numbers, a series 
of M data sets comprising N points with the same level 
of noise are simulated as synthetic realizations of the 
experiment. The above procedure of obtaining the 
stiffness constants is applied to the M data sets and 
provided the number M is sufficiently large, calculated 
standard deviations are good estimates of the uncer- 
tainties in obtaining stiffness constants from the ex- 
perimental set of N points. The relative error for each 
of the stiffness constants C,,, C,,, and C,, is given by: 

where C, is the value obtained from the simulated 
data set rn and C, is the true value obtained from the 
experimental set. A number M = 100 was found suf- 
ficient for a proper evaluation of the uncertainty in 
these constants. The method described here for the 
stiffness constants works equally well for the uncer- 
tainties in the engineering constants and is actually 
used here. 

4. MEASUREMENTS ON PET 

Roll-Drawing and Process Results 

Many efforts have been made in the past two de- 
cades on the development of orientation in semicrys- 
talline polymers (1, 14). Particular achievements were 
made recently on making polyethylene fibers with 
moduli near 240 GPa ( 15) using the gel spinning tech- 
nique. Such highly oriented PE fibers can be used in 
many applications, as marine ropes and antiballistic 
clothes. However, because of their low melting tem- 
perature and poor creep properties, their use in s t rue  
tural applications is rather limited. In fact, the market 
is still dominated by composites despite many disad- 
vantages (cost, density, fabrication, recycling). Hence, 
the potential of oriented polymers obtained by solid 
state processes in the form of shapes, profiles, and 
sheets and having properties in the range of those of 
composites is high. 

Experimental results have shown that uniaxial ori- 
entation improves stiffness properties in the machine 
(drawl direction but decreases transverse properties 
at the same time. Many solutions have been proposed 
that act on the material and not on the process, there- 
fore limiting their generality. Another solution is bi- 
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axial orientation, which requires specific geometrical 
designs depending on the needed shape. Examples 
are tubes and flat profiles (16, 17). However, biaxial 
orientation will limit the maximum draw ratio that can 
be achieved in comparison to uniaxial deformation. 
Other solutions, but only for flat profiles, are pro- 
cesses such as rolltrusion, rolling, and roll-drawing. 

Many efforts have been directed to materials such 
as polyethylene (PE) and polypropylene (PP). However, 
because of their low melting temperatures, as men- 
tioned above for the fibers, their applications are 
rather limited and particular focus was directed to- 
ward polymers with a higher melting point. Some of 
these studies considered polymers presenting an al- 
pha crystallization temperature, above which in- 
tracrystalline interactions are considerably reduced. 
This permitted the obtainment of draw ratios by solid 
state deformation >20. Very few studies dealt with 
semicrystalline polymers that do not present an alpha 
crystallization, such as PET, nylons, PES, and PEEK 
(18). For PET, most studies were concerned with its 
deformation from the melt such as films and fibers. 
The concern here is on mechanical properties of solid 
state roll-drawn semicrystalline PET. 

In this study, an extrusion grade of PET (Selar PT) 
purchased from DuPont was used, having a crystal- 
linity of 30% and a melting temperature of 255°C. The 
PET material was first dried at 120°C before being fed 
to the extruder. The feed zone temperature of the ex- 
truder was set between 240 and 260°C, the following 
zones, temperatures were between 260 and 290°C and 
the die zone temperature between 265 and 280°C. The 
temperatures in the gear pump section were set be- 
tween 270 and 280°C. The extruder PM and resulting 
pressure depended on the output used. The extruder's 
output profile speed was between 20 and 100 cm/ 
min. The deformation temperature ranged from 180 to 
230°C. The initial profile dimensions were 1 cm in 
thickness and 10 cm in width. The isotropic profiles 
were marked regularly before entry into the rolls by 10 
cm spaced lines. The draw ratio was calculated using 
these marks, corresponding in fact to the length draw 
ratio. 

The roll-drawing equipment consisted of a series of 
four pairs of rolls, with adjustable speed and temper- 
ature. In order to minimize relaxation and elastic re- 
covery effects, the profile has to be maintained under 
tension after the deformation by rolling. By applica- 
tion of tension as reported previously (18), it was pos- 
sible to achieve a maximum draw ratio of 5.2 for PET, 
under normal cooling conditions (ambient air) and for 
rolls gap of 1.25 mm. The initial PET profile crystal- 
linity of 30% was found to increase with draw ratio, 
attaining 50% for a draw ratio of 5. This induced a 
small change in the density from 1380 to 1408 kg/m3, 
a variation of 5 1 %. 

Ultrasonic Results and Discussion 

Ultrasonic mapping of anisotropy and evaluation of 
stiffness constants can now be made on oriented sam- 

ples of PET with the procedure described in the previ- 
ous section. Using an immersion technique, time-of- 
flight measurements in various directions of the ma- 
terial will allow us to determine the different stiffness 
components. Samples were cut from the flat profiles 
obtained with draw ratios from 1.0 to 4.2. The thick- 
nesses, e,  were measured and found between 2 and 9 
mm. For the density, a constant value p = 1400 kg/m3 
is used in the calculation. Also, measurements at dif- 
ferent angles in the transverse plane will allow direct 
validation of the approximation for transversely iso- 
tropic symmetry. From the waveform data, the only 
information required is time-of-flight differences A t  of 
L and S modes, that for different angles 0, not neces- 
sarily at fixed interval. A best fit with respect to group 
velocity using Eqs 22, 24 is obtained on each sample 
with different draw ratios simultaneously using the 
data for both L and S modes. 

As an example, the time-of-flight data and the best 
fit obtained for the sample with a draw ratio A = 2.23 
is shown in Fig. 9. In Fig. 9a, the time-of-flight differ- 
ences At normalized with v,/e are shown for both L 
and S modes for different angles 8, in planes 1-2 
(squares) and 1-3 (circles). As expected, the arrivals in 
these planes are different. One first notices the pres- 
ence of L mode for angle 0, < 40" in plane 1-2 while it 
is only for 0, < 30" in plane 1-3. For S mode, the pulse 
arrivals are clearly different in plane 1-2 compared to 
plane 1-3. Correspondingly, in Fig. 9b, the best fit 
obtained with group velocity is excellent with the elas- 
tic constants as given in Table 2 together with the 
uncertainties. One notices that Young's moduli are 
clearly different along axes 1 and 3 with a ratio E3/E ,  = 
2.1. Also, such polar plots of the slowness 1 lug vs. OP 
for L and S modes in symmetry planes 1-2 and 1-3 
allow a detailed mapping of the anisotropy in the ma- 
terial. An important point is the circular patterns ob- 
served for plane 1-2 in this Figure, which validate the 
assumption of transversely isotropic symmetry. Sim- 
ilar good fits were obtained for all PET samples with 
uncertainties on the :stiffness and engineering con- 
stants of <5%. 

Figure 10 illustrates for plane 1-3 an example of 
necessary lateral displacement, 8, for transducer R in 
order to follow the center of ultrasonic beam with 
maximum amplitude and acquire the appropriate 
time of flight data. Measurement data in Fig. 1 0  are for 
L and S modes and predictions from the model (with 
stiffness constants already evaluated) are shown for 
the wave front (dotted lines) and energy flux (solid 
lines). As clearly shown in this Figure, detection of an 
ultrasonic signal appears more related to energy prop- 
agation (group velocity) than to wave front propaga- 
tion (phase velocity). Tlhis is especially convincing in 
view of the widely different behaviors associated with 
the S mode. 

In Figs. 11 and 12, all1 seven engineering constants 
for the different PET samples are presented as a func- 
tion of draw ratio A. Figures 1 la and 1 1 b show the 
results, respectively, 5or the axial and transverse 
Young's moduli. In parallel to using ultrasonics for 
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Fig. 9. Resultsfor the PET sample with draw ratio A = 2.23 in 
planes 1-2 (squares) and 1-3 [circles): a) time-ofjZight mea- 
surements and b) corresponding bestJt with group velocity 
representing the anisotropy in the sample. 

Table 2. Elastic Constants Corresponding to Best Fit for a 
PET Sample With Draw Ratio A = 2.23. 

Stiffness Constants Engineering Constants 

Cl1 7.68 GPa 2 1.0% E3 8.14 GPa 5 1.0% 
CS6 1.24 GPa 5 1 .O% El 3.85 GPa ? 1.0% 
C,, 12.11 GPa? 1.0% G,, 1.20 GPa ? 2.0% 
C,, 1.20 GPa r 2.0% G,, 1.24 GPa -f- 1.0% 
C,, 5.06 GPa i 1.0% '1 3 0.39 ? 1 .O% 

V12 0.56 ? 1 .O% 
VQ, 0.1 9 2 2.0% 

assessing stiffness constants, results from static ten- 
sile tests are also presented in these Figures. With this 
range of draw ratio for PET, the axial modulus deter- 
mined by ultrasonics increases almost linearly from 4 
to 16 GPa while the transverse modulus is almost 
constant near 4 GPa. This proves the efficiency of the 
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Fig. 10. Luteral dispzacement for transducer R in plane 1-3. 
Measurements are for both L (circles) and  S (squares) modes: 
predictions from the modeZ arefor waue front (dotted lines) 
and energyjlwc (solid lines). 

roll-drawing process for flat profiles to improve stiff- 
ness properties in the machine direction without de- 
teriorating transverse properties, as compared with 
uniaxial deformation. 

For comparison, moduli obtained from mechanical 
tensile tests show the same tendency with draw ratio, 
but with values always lower than those determined 
using ultrasonics. For the axial modulus, the devia- 
tion increases progressively with the draw ratio from 
20% to 60% while the transverse modulus remains 
roughly constant around 15%. In fact, these results 
for the semicrystalline PET can be interpreted in terms 
of the viscoelasticity associated with the amorphous 
and crystalline phases. While mechanical tests are 
performed at  low frequency, typically 1-10 Hz, ultra- 
sonic moduli correspond to frequencies in the MHz 
range. In terms of time-temperature equivalence prin- 
ciple, this means that the ultrasonic results obtained 
at or near 20°C should be compared with static mea- 
surements a t  or near -40°C (2, 3). Therefore, increas- 
ing the draw ratio, the crystalline and amorphous 
components are made more aligned and parallel to the 
draw axis with a stronger viscoelastic behavior. In the 
transverse direction, low forces of Van der Waals and 
hydrogen bonding types are being more involved com- 
pared with the isotropic material, hence limiting the 
effect due to viscoelasticity. 

In Figs. 12a and 12b, results are shown, respec- 
tively, for the two shear moduli and the three Poisson's 
ratios as determined by ultrasonics. With this range of 
draw ratio in Fig. 12a. the modulus G,, is shown to 
continuously decrease from 1.5 to 1.2 GPa. For the 
modulus G,, however, the decrease is found more 
drastic, from 1.5 to 0.9 GPa (40%) and only upon 
exceeding a draw ratio of A = 2. Here, two different 
reasons may explain this effect. The first reason would 
be the sensitivity of modulus G,, to the sliding of 
lamellae and the presence of dislocations by further 
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Draw ratio 
Fig. 1 I. Draw ratio dependence for Young's moduli of PET 
samples. Results are from ultrasonics (solid circlesJ and static 
tests (empty circles) for aj axial modulus and bj transverse 
modulus. 

increasing the draw ratio above A = 2 for PET. The 
second would be the later alignment of the amorphous 
phase yielding the low forces in the transverse direc- 
tion as above and the greater ease for splitting along 
planes 1-3. For Poisson's ratios in Fig. 12b with this 
range of draw ratio, us1 is found to continuously de- 
crease as expected from 0.38 to 0.1 1 while uI3 is only 
slightly increasing from 0.40 to 0.48. For the case of 
v12, however, the increase is more pronounced, from 
0.36 to 0.59 (60%), but occurs mainly in the range of 
the low draw ratios (up to A = 2). We believe this 
Poisson's ratio is dominated by the alignment of the 
crystalline phase occurring in the first stage. In all 
cases, values of Poisson's ratios obtained by ultrason- 

1.6 

1 2 3 4 
Draw ratio 

I 2 3 4 
Draw ratio 

Fig. 12. Draw ratio dependence for a) shear moduli and b) 
Poisson's ratios of PET sczmples as obtained from ultrasonics. 

ics fall within the bounds derived in the literature for 
anisotropic materials (19, 20). 

5. CONCLUSION 

We have shown that ultrasonics is a useful method 
for investigating the elastic properties as well as char- 
acterizing the anisotrospy of oriented polymers, in par- 
ticular roll-drawn PET. While being nondestructive, 
such a method allows the determination of more me- 
chanical moduli with a better accuracy than conven- 
tional tensile methodis, especially regarding shear 
properties. An improved version of the immersion 
technique is proposed in this work using a formalism 
based on the group velocity for analyzing time-of-flight 
data, including the allowance for lateral displacement 
of the transmitted beaim. We have shown an example 
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of lateral displacement which clearly indicates that 
ultrasonic signal detected relates to energy propaga- 
tion (group velocity), not to wave front (phase velocity). 
We have also outlined a robust algorithm for the re- 
covery of elastic constants from experimental time-of- 
flight data. 

Results are presented for the roll-drawing of PET 
with various draw ratios. Here, the main results for 
roll-drawn PET are summarized as followed: 11 the 
circular patterns observed for plane 1-2 validate the 
assumption of transversely isotropic symmetry for 
draw ratios up to 4.2, 2) the efficiency of the roll- 
drawing process for flat profiles is proven, improving 
stiffness properties in the machine direction without 
decreasing transverse properties, 3) the larger ultra- 
sonic Young’s moduli by 10% to 60% comparing with 
tensile tests can be interpreted in terms of viscoelas- 
ticity considering both the amorphous and crystalline 
phases, 4) the 40% decrease of shear modulus G,, 
upon exceeding a draw ratio of 2 may be explained by 
the lamellae sliding and the later alignment of the 
amorphous phase and 5) the 60% increase of Pois- 
son’s ratio q2 attaining 0.59 for low draw ratios is due 
to the alignment of the crystalline phase in the first 
stage. 
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