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Abstract 

In many cases the identification of systems by means of fuzzy rules is given by taking these rules from a predetermined 
set of possible ones. In this case, the correct description of the system is to be given by a finite set of rules each with an 
associated weight which assesses its correctness or accuracy. Here we present a method to learn this consistence level or 
weight by a neural network. The design of this neural network as well as the features of the training models are discussed. 
The paper concludes with an example. 
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1. Introduction 

M a n y  systems are to be represented by fuzzy 
rules, for instance, in the fuzzy control  setting; how- 
ever, it is not  always possible to obtain  this identi- 
fication easily. Often the rules in the fuzzy logic 
controllers are obtained by analyzing expert 's ex- 
perience or  by a t r ia l-and-error  approach,  a l though 
an interesting alternative is appearing,  the auto-  
matic  technicals, which go from the statistical 
methods  to the novel genetic algorithms, which 
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solve the problem of identifying fuzzy systems, 
when experts cannot  do it otherwise. 

In this paper  by "cont inuous  system" we will 
refer to any system described by y = f ( x )  where 
x ~ ~", y ~ It~", f :  ~" --. ~m being continuous.  The 
systems based on fuzzy rules, which we will con- 
sider, are characterized by a finite set of  fuzzy 
I F - T H E N  rules in usual form. 

Buckley et al. [1] have shown that, from theoret- 
ical point  of  view, the systems based on rules are 
universal approximators ,  that  is, for any given con- 
t inuous system we may  obtain a system based on 
rules closely approximated  to a given system with 
predetermined accuracy. 

In several cases the rules are to be taken from 
a given set of possible ones (for instance, when 
linguistic variables are assessed on a fixed term set). 
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In this case to conceive the right description of  the 
system, as given by a finite set of rules, each with 
a weight which assesses its correctness or accuracy, 
seems to be reasonable. 

To obtain such an identification, several ap- 
proaches have been developed. We present 
a method  based on the ability of  learning about  the 
neural networks. Several research papers [2 ,3]  
have shown that  feedforward neural networks are 
universal approximators ,  and how these neural net- 
works can be trained by supervised learning. These 
neural networks are a cont inuous  overlapping from 
[0, 1]" to [0, 1]". By using a multi layer network 
with a suitably large number  of neurons in the 
hidden layer, we can obtain a cont inuous  overlap 
from the input variables to output  variables. Learn- 
ing is carried out  from the knowledge of the empiric 
database like training sets. 

F r o m  the point  of view of  the practical identifica- 
tion, in the following, we will denote any fuzzy set 
and its membership  with the same capital letter, 
and we discretize the fuzzy sets (input output  of 
fuzzy system) as follows. 

I fA  is a fuzzy set, it is the membership  function of 
a fuzzy set whose domain  is the interval [Uo,Ul]. 
We choose a fixed natural  k and make a part i t ion of 
the domain,  obta ining the elements: sg = Uo + 
(i - 1)(ul - Uo)/(k - 1),i = {1,2 . . . . .  k}; we associ- 
ate the vector a = (a l ,a2 . . . . .  ak) = (A(sl),  A(s2), 
. . . .  A(Sk)), a i=A(s l )~EO,  1] with vector s =  

( s , ,  s2 . . . . .  sk). 
When a fuzzy system is described by rules then 

for any fuzzy set in the antecedent as well as any 
fuzzy set in the consequent,  the discretization is to 
be carried out  and then if the rules have r and 
t variables in the antecedent and the consequent,  
respectively, then each rule can be considered as an 
overlap from [0, 1 ] "  + ' + "~ to [0, 1] m~ + " '  + m, 
where n~ and mj are the discretization sizes on 
the corresponding referentials, i =  1 . . . . .  r; j = 
1, . . .  , t .  

Thus,  in general, for any fuzzy system the input 
may be modeled by an n-dimensional vector 
(x~, x2, ... , x,) vector whereas the output  will be an 
m-dimensional one, (Y~,Y2 . . . . .  y,,), with xi, y j ~  
[0, 1], i =  1 . . . . .  n; j = 1 . . . . .  m. 

Therefore, we can express any fuzzy system as an 
overlap from [-0, 1]" to [0, 1]". 

2. Raising of the problem 

Let us show our  method on a system with one 
input variable and only one output  variable, al- 
though the procedure can be straightforwardly ex- 
tended for more  complex systems. 

Let us consider a cont inuous  system driven by an 
input output  equat ion v = f ( u ) ,  u e ~ " ,  v ~ "  
(Fig. 1). We suppose that  f is unknown,  but we 
dispose a finite number  of  observations (ug, vz), 
i =  1, ... ,N,  obtained through some automat ic  
moni tor ing  process (over time). 

In the literature there are models where uz and v~ 
can be fuzzy sets, but  in most  of the real cases will 
be crisp, because the available sensors give non- 
fuzzy data. 

F rom the cont inuous  system defined in U -~ V, 
we just know a series crisp i npu t -ou tpu t  (ui, vi), 
ui~ U, v~c V, i =  1 . . . . .  N. This basic knowledge 
will be straightforwardly expressed by the following 
set of rules: 

RI :  I f u  is ul then v is vl 

R2:  If u is u 2 then v is v2 

RN: If u is up then v is yr. 

By introducing the linguistic variables H v  and 
Hv associated with the crisp ones u and v, respec- 
tively, we shall obtain the system 

RI:  If Hu is ul then Hv is vl 

R2:  If Hu is u2 then Hv is v2 

R~: If H v  is uN then H v  is u N 

which we will call initial. 
Let us assume that  He  and Hv take values on the 

respective term sets of labels {L1, L2 . . . . .  Ls} and 
{ E l ,  E 2 . . . . .  Et} .  Each label will have its semantics 
given by a fuzzy set on the corresponding referen- 
tial, concretely Lg on U, and Ej on V, i = 1, . . . ,  s; 
j = l  . . . . .  t. 

Thus  any possible rule will have the form 
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I v = f(u)  l 

r - - ]  

u i  

i v  

Fig. 1. 

Rij: IF  Hv is Li T H E N  H v  is E~ for some 
i6{1 . . . .  ,s} a n d j 6 { 1 , . . . , t } .  

Then the set of all possible rules to describe the 
system f : U - - ,  V is {R~j , i= 1 . . . . .  s; j =  1 . . . . .  t} 
which may be identified with the Cartesian produc t  

= { { L , , L 2  . . . .  ,L~} x {E , ,E2  . . . . .  E,}}. 

However,  for describing our  given system some 
of  those possible rules will be obviously more  suit- 
able than the others. 

Therefore, we can associate a weight or consist- 
ence label, )~ e [0, 1] with each rule R~;, i = 1 . . . .  , s; 
j = 1 . . . . .  t, such that  this weight measures the 
belief (or the t ruth value) of the proposi t ion  "R~ i is 
a good rule to describe f :  U ~ V". In other  words, 
),~ is a measure of  the ability of the rule R/j to 
describe f :  U --* V. 

Thus,  our  first objective is to find the weights 
of each rule R~j associated with the cont inuous  
system defined in U ~ V. Once we have all the 
consistence levels of  each rule, we would have ob- 
tained a description of our  system in terms of  
{(Rij, 2ij), i =  1, ... ,s; j :  1 . . . . .  t}. This is the.  
most  complete description according to our  basic 
hypothesis. 

To  avoid handl ing a great number  of  non-signifi- 
cative rules for practical purposes we may  select the 
best ones by taking those rules with the greater 
consistence level. This "greater  consistence" is itself 
a fuzzy qualification which requires a better defini- 
tion. In fact, we take a 6 > 0 and keep the rules with 
2 0 >1 1 - - 6 .  The system described by {Rij,)~ij, 
2~j ~> 1 - g }  will be called the last system and it 
describes the initial system. 

3. The identification procedure 

We solve this problem as follows: 
• We discretize the referential sets U and V, there- 

by obtaining U = { u l , u 2  . . . . .  u,} and V =  

{ 1,v2 . . . .  
• Let us suppose that  the variables Hv and Hv can 

take values in the sets {LI ,Lz  . . . .  ,Ls}, 
{El,  E2 . . . . .  Et} of  linguistic labels. 

• With each crisp rule, a real number,  which we 
shall call "weight of rule", 2 = 1 is in t roduced to 
reveal their consistence level. 

• The referential W = U × V defined by orders 
pairs (u~, vr), l = {1,2 . . . .  , n}, r = { 1, 2 . . . . .  m} is 
considered to define the observations of the 
problem. 

• On  W we establish the set ~ = { L I × E 1 ,  
L 1 × E 2 . . . . .  L~ x E,} to be the Cartesian prod-  
uct from the term sets of  linguistic labels. 

• On  the new referential W we define the variable 
Hu × v which takes values on the set ~ or W. 

• The variable H~ (weight of a rule) which takes 
values in the interval [-0, 1] c R is introduced.  
So we have defined the set of all possible rules 

from the establishment of the variable H~: × v asso- 
ciated with the Cartesian produc t  set ~'. 

Once  we have defined these new concepts, we 
build a new system that we shall name as intermedi- 
ate system which will be defined in W ~ [-0, 1] by 
the following set of  rules: 

RI: I f H v × v  is (u l , v l )  then Hr is 1 

R2: I fH~.×v  is (Uz,V2) then HI  is 1 

Rn: If Hu× v is (UN, VN) then Hr is 1 
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The objective that we now pursue is to identify 
the intermediate system by a system based on rules 
such as the following: 

R~: IF Hu × v is (Li, Ej) T H E N  HI is 2o, 
i = { 1 , 2  . . . . .  s } ; j = { l , 2  . . . . .  t}. 

Once we have achieved this new system, we have 
all feasible rules that can identify the initial system 
and the level of consistence associated with each 
rule; hence the first objective is achieved. 

3.1. Identification of  the intermediate system 

By the used discretization procedure explained 
before, the intermediate system may be translated 
into an overlapping from [0, 1] "+m to [0, 1]. 

Let us note that if the initial system is continuous 
(small deviates on the input -output  will produce 
small deviations on the level of consistence of the 
rule aforesaid by the variables HI), then it is easy to 
show that the intermediate system is a continuous 
system too. 

Therefore, we can use a feedforward neural net- 
work with a hidden layer and with sigmoidal ac- 
tivation functions to identify the intermediate 
system. For  this we need to define the net topology 
and the training models. 

3.2. Net topology 

We propose a neural network feedforward 
with one hidden layer and sigmoidal activation 

functions l ikef(x) = 1/(1 + e x) both in the hidden 
layer and the output layer. 

The system that we have identified is an overlap- 
ping one from [0,1] "+" to [0,1], so we shall 
use a network with n + m neurons in the first layer 
and one neuron in the output layer. Obviously, 
the input in the first layer will be an element 
of [0, 1] "+" and the output from the last layer 
will be an element of [0,1] according to 
Fig. 2. 

We can carry out the training of the network by 
choosing an appropriate method such as the back- 
propagat ion algorithm in [4] with previous mod- 
els, and we can find a function that comes as close 
as we want to the system. 

3.3. Models of  training 

The construction and training of the network 
require the selection of models, which are obviously 
(n + m)-dimensional vectors. We propose to choose 
the models to train the network from the next sets 
of ordered pairs: 

(I) A finite number of ordered pairs ((ul, vi), 1), 
i = 1, ... , N, are the crisp rules which represent the 
system. 

(II) Because the initial system is continuous, the 
intermediate system is also continuous; therefore 
we have ordered pairs such as ((ui, vi +_ e), 1), where 
e is selected as a very small number. 

(III) Because of continuity, we choose the pairs 
of input ((ui, vi _+ p),2i) where p is a real number 
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that is not very small, 2i = 1 - kp  and kp  is a real 
number  proport ional  to p. 

Types I - I I I  correspond to crisp input -output  
pairs, but the system we are looking for is a fuzzy 
one. Then we may construct fuzzy models from 
crisp pairs by associating an interval on V with any 
observation in U. 

(IV) By the fuzzyfication, we get the pairs ((u, 
[vi - ~, vi + e]), 1). The consistence for level for the 
types I, II and IV is 1. 

(V) From type I, we can get the negative train- 
ing pairs ((u, vi _+ fl), 0), which have been taken out 
from an expert or have been inferred from the crisp 
rules; fl is chosen such that vi +_ fl will go away from 
Ui. 

(VI) From fuzzyfication of the negative pairs, we 
get the pairs similar to the ones of type IV, i.e. 
(bli, [U i - -  /~ - -  e, L~ i - -  /~ ~- e'], 0)  and (ui, [vi + fl - e, 
vi + ~ + el, 0). 

The training models (n + m-dimensional vectors) 
are chosen from each ordered pair, so that their 
components  will be all null except the ones that are 
placed at the position given by the ordered pair, 
which are assigned to 1. 

Once the neural network has been trained, we 
can get the weight of each rule, showing in the first 
layer the appropriate  vectors to represent the ante- 
cedent and consequent of rule obtaining the weight 
of this rule in the output. We thus build a system in 
which 
- inputs are rules, 

the output associated with any rule is the weight 
(or accuracy level) of this rule. 
After determining the weight of all rules we may 

keep only the rules with a large enough consistence 
level. 

We can generalize the previous process for the 
case where universes U and V are a product of 
a finite number  of the universes, where there are 
more than one variable. 

4. E x a m p l e  

Let us consider a system being associated with 
the relation X = Y which is supposed to be pre- 
viously unknown and defined on the universes 
U = { 1,2 . . . . .  11 } and V = { 1, 2 . . . . .  11 }, which are 

Table  1 

u, v values  Smal l  M e d i u m  Large  

1 1.00 0.01 0.00 

2 0.81 0.20 0.00 
3 0.60 0.39 0.00 
4 0.41 0.60 0.00 

5 0.19 0.80 0.00 
6 0.01 1.00 0.00 
7 0.00 0.80 0.21 
8 0.00 0.60 0.40 
9 0.00 0.41 0.61 

10 0.00 0.20 0.80 
11 0.00 0.00 1.00 

1 : ~ :  mall  Medium Large 

\ 
0.39 

0 . 0 1 v  . , 
0 1 4 5 6 7 8 9 10 11 

Fig. 3. 

already discrete and no discretization is obviously 
needed. Thus, only a representation in some appro- 
priated code is necessary from the computat ional  
point of view. 

Let us assume, that a set of crisp input output 
pairs for this system is known. We are interested in 
the identification of this system by a fuzzy system 
based on rules. We will also suppose that the term 
sets of linguistic variables H e  and H v  are both 
limited to the values large, medium and small. 
Thus, the set of all possible rules has nine elements. 

4.1. Training the ne twork  

By the procedure of discretization, the labels 
have associated membership functions as shown in 
Table 1 (see also Fig. 3): 
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Let us suppose  tha t  our  observa t ions  abou t  the 
systems are eleven pairs in the form (k,k), 
k = l  . . . . .  11. 

Then  we may  obta in  the training pairs of the 
a forement ioned  types I VI in a s t ra ight forward 
manner :  

(I) ((1, 1), 1),((2,2), 1) . . . . .  ((11, 11), 1), 
(II) ((1, 2), 1),((2, 3), 1) . . . . .  ((10, 11), 1),((2, 1), 1),((3,2), 1), 

. . . .  ((11, 10), 1), 
(III) ((1, 3), 0.3), ((2, 4), 0.3) . . . . .  ((8, 10), 0.3) . . . . .  ((3, 1), 0.3), 

. . . .  ((10, 8), 0.3) ,  
(IV) ((2,(1, 2, 3)), 1),((3,(2, 3,4), 1) . . . . .  ((10,(9, 10, 11), 1), 
(V) ((1, 5),0),((2,6),0) . . . . .  ((ll, 1),0),((1,9),0),((2, 10),0), 

. . . .  ((11,3),o), 
(VI) ((1,(4, 5, 6)),0), ((2,(5, 6, 7)),0) . . . . .  ((1,(9, 10, 11)), 

0 . . . .  

For  each pair  of elements  the training model  will 
be chosen as we have shown before. 

N o w  the models  are to be coded in the same 
manne r  which will discretize the labels. We show 
the codification of some models.  

((3, 4), 1) 
((o, o, 1, o, o, o, o, o, o, o, o, o, o, o, l, o, o,o, o, o, o, o), 1), 

((3, (2, 3, 4)), 1) 
((o, o, 1 ,o ,o ,o ,o ,o ,o ,o ,o ,o ,  1,1, 1,o,o, o, o, o, o, o), 1), 

((3, (6, 7, 8)), 0) 
((o, o, 1 ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,o ,  i, 1, 1,o, o, o), o), 

((2, 4), 0.3) 
((0, 1,0,0,0,0,0,0, 0,0,0, 0,0,0, 1,0,0,0,0,0,0,0),0.3). 

The  remainder  of i n p u t - o u t p u t  of the ne twork  
will be codified similarly. 

Let us r emark  that  f rom the original i npu t -ou t -  
put  pairs of crisp observat ions  on infinite numbers  
of training pairs m a y  be obtained.  Then  a finite set 
is to be selected. In general, the greater  this n u m b e r  
the bet ter  the training achieved, but  the me thod  is 
very robust  as different training sets p roduce  sim- 
ilar t raining results. 

Fig. 4 show the behav ior  of the error  against  four 
different t raining sets r andomly  constructed.  
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4.2. Obtaining the system based on rules 

After training the network to identify the 
initial system, the feasible rules are presented 
to the network to obtain the desired weight. For 
example, 

Rl: small ~ small 

Input: (1.00, 0.81, 0.60, 0.41, 0.19, 0.01, 0.00, 0,00, 
0.00, 0.00, 0.00, 1.00, 0.81, 0.60, 0.41, 0.19, 0.01, 0.00, 
0,00, 0.00, 0.00, 0.00) 

Output  (level of consistence): 0.92 

R2: small ~ medium 

Input: (1.00, 0.81, 0.60, 0.41, 0.19, 0.01, 0.00, 0,00, 
0.00, 0.00, 0.00, 0.01, 0.20, 0.39, 0.60, 0.80, 1.00, 0.80, 
0,60, 0.41, 0.20, 0.00) 

Output  (level of consistence): 0.00 

R3: small --*large 

Input: (1.00, 0.81, 0.60, 0.41, 0.19, 0.01, 0.00, 0,00, 
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.21, 
0,40, 0.61, 0.80, 1.00) 

Output  (level of consistence): 0.01 

RT: large ~ small 

Input: (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.21, 0.40, 
0.61, 0.80, 1.00, 1.00, 0.81, 0.60, 0.41, 0.19, 0.0t, 0.00, 
0,00, 0.00, 0.00, 0.00) 

Output  (level of consistence): 0.07 

Rs: large ~ medium 

Input: (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.21, 0,40, 
0.61, 0.80, 1.00, 0.01, 0.20, 0.39, 0.60, 0.80, 1.00, 0.80, 
0,60, 0.41, 0.20, 0.00) 

Output  (level of consistence): 0.04 

R9: large --, large 

Input: (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.21, 0,40, 
0.61, 0.80, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.21, 
0,40, 0.61, 0.80, 1.00) 

Output  (level of consistence): 0.99 

By choosing the rules with a greater weight we 
finally obtain what is to be considered the "right 
description" of the system: 

Regta-l: small ~ small 

Regla-2: medium --, medium 

Regla-3: large --* large 

which obviously characterizes the equality in 
a fuzzy way. 

R4: Medium ~ small 

Input: (0.01, 0.20, 0.39, 0.60, 0.80, 1.00, 0.80, 0,60, 
0.41, 0.20, 0.00, 1.00, 0.81, 0.60, 0.41, 0.19, 0.01, 0.00, 
0,00, 0.00, 0.00, 0.00) 

Output: (level of consistence): 0.07 

Rs: medium ~ medium 

Input: (0.01, 0.20, 0.39, 0.60, 0.80, 1.00, 0.80, 0,60, 
0.41, 0.20, 0.00, 0.01, 0.20, 0.39, 0.60, 0.80, 1.00, 0.80, 
0,60, 0.41, 0.20, 0.00) 

Output  (level of consistence): 0.98 

5. Concluding remarks 

We have developed a methodology for learning 
rules and their consistence level, in a fuzzy environ- 
ment which uses only empirical information, using 
a feedforward network. 

The extension to more complex problems may be 
performed in a direct way. When we consider a sys- 
tem where there are several input-output  variables 
then, we must build the Cartesian product of the 
sets where they are defined and then the same 
method can be applied. 

R6: medium ---, large 

Input: (0.01, 0.20, 0.39, 0.60, 0.80, 1.00, 0.80, 0.60, 
0.41, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.21, 
0,40, 0.61, 0.80, 1.00) 

Output  (level of consistence): 0.08 
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