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ABSTRACT

Jacobs, Ira. Fh.D., Purdue University, June 1955.

The Volume Exclusion Effect in Flexible Long Chain Molecules.
Major Professor: Hubert M. James

A theoretical description of the volume exclusion effect
in flexible long chain molecules is developed. A chain of
impenetrable small beads is considered as a model of a
macromolecule, and the statistlcal properties of this model
are Investigated in an attempt to explain a discrepancy
between experiment and statistical theories neglecting
volume exclusion.

Light scattering and viscosity measurements, quoted
in Chapter I, indicste that the mean square chain extensiom,
<r*), inicrenEeE aP b , where t is the number of links
in the chain. Statistical theoriles considering only local
hindrances give {r?)~ t.

A critical discussion of the literature on volume
exclusion is given in Chapter II. Theories leading to the
result {r*)~ t in the limit of large t.are criticized on
one of the two following points:

i)} The effect of volume exclusion can not be considered
as a sliort-range correlation..

11) Normalization of the trensition weights in an
analogous random-walk problem incorrectly weights the
configurations of an actual chain.

Treatments leading to the result {r*}st+at are also
eriticized.
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By relating the weights of configurations of t and
trl 1links, a systematic formulation of the theory is developed
in Chapter III. For mathematical convenience, volume
exclusion due to the end beads is neglected. Integration
over the co-ordinates of all but the end beads gives an
integro-difference equation for $(t,T), the weight density
of configurations of a chain of t links with extension T.
This equation contains a function, &(t,F:T), the veight
density of configurations in which another bead 1s at T.
Likewise, an integro-difference equation for §. is derived,
containing a function 3,. In this way a system of t-1
equations can be obtzined, which in principle can be used
‘to calculate 3(t,F). A method of successive approximations
is proposed. Solutions are obtained in the absence of volume
exclusion and in a first approximation, but the second-order
calculation is not successfully completed. It is shown that
the rirst-order result correctly excludes all configurations
containing an interference (say, between beads i and j)
such that there are no interferences between beads on
opposite sides of either i or j, or between beads both of
which lie between i and jJ..

In Chapter IV a limiting procedure 1s considered
vhereby the integro-difference equation for F(t,T) is
replaced by a2 boundary value problem. Successive approxi=--
mations to $(t,F) are defined by specifying successive
approximations to F(t,P:%) e B(t,F:7)/ & (t,F). The first-
order caleulation of James is shown to be formally valid
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over a wlder range of r values than he considers. It is
ghown that for values of vi*Z 0.6 to 2.0 the first order
theory predicts (r‘>~t‘!'"1n good agreement with
experimental and Monte Carlo results. (The volume, v,
excluded to all other beads by a single bead, is measured
in wnits in which the rms link length is one.) For large
velues of vt’, the first-order theory predicts {r*)~ t%,
tut it 1s shown that the second-order calculation will give
significént corrections in this range. The second-order
caleulation is considered in detail. Inadequate approxi—
mations can lead to either the first-order result or to the
cbnclusion thzt volume exclusion is negligible in effect.
Mathematical difficulties prevent any definite conclusion

-from being drawn.

In Chapter V it is shown how {r!) can be directly
evaluated without explicitly determining ¥,(t,T). The
results are seen to be hypersensitive to the aprroximations
mgde, and without extensive numerical computations, not
considered here, the method is not useful.

The difficulty in further extending the calculation,
due to the fact that the relative number of allowable
eonfigurations decreases exponentially with t, is discussed,
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CHAPTER I
THE DISCREPANCY BETWEEN E.ARI.Y THEORY AND EXPERIMENT

1. Introduction

" Since the earIf work of Kuhn (30) and Guth and Mark (20),
cméiderabl’e attention has been given to the application
of statistical mechanics to the theoretical description of
high polymers. We shall restrict our attention to Iinear
polymers--that is, macromolecules in which the structural
units are bonded to one another in linesr sequence to form
an unbranched chaine In particular, we shall conslder here
the configurations of these macromolecules in dilute solution,
such that intermoIecular interactions can be neglected.
The main purpose of this work will be to obtain a statistical
description of the configurations of flexible long chain
molecules, giving for example the dependence of mean dimen-
sions upon molecular weighte In an attempt to explain e
discrepancy between the earlier theories and recent experi-
mental results, we shall consider particularly the volume
exclusion effect-~ihut is, our model will take cognizance
of the fact that no two parts of the chain ecan occupy the
same positigs in spacee.

A drief description of pertinent éxperimental results

viIX be given before we discuss the various theoretical
modgls that have been used.



2. Lieht Scattering and Viscogity Studies

Light scattering from dilute solutions provides not
only one of the most useful means for determining the molee~
ulzyr- weight of high polymers, but also a means for deter=
nining the average dimensions of randomly colled molecules
in solution. |

If the dimensions of the scattering molecule are small
compared to the wavelength of the light, and if the solution
is sufficiently dilute, then the excess scattering due to
solute can be simply calculated by classical theory. If
it is assumed that the scattering 1s due to induced dipoles
and that the polarizing field is just the fleld of the
incident radiation, undistorted by the presence of other
scattering molecules, classical electromagnetic theory gives
the following results. (5, 6, 11) If the incident radiation
is unpolarized, then the scattering through an angle € 1s
proportional to 1+ cos® 6, being symmetric about 6= .
If the incident radiation is linearly polarized, then the
scattered intensity is proportional to the square of the
sine of the angle between the direction of polarization
and the directlon of scatterings consequently the scattering
will be isotropic in the plane perpendicular to the direction
of polarization, _

For molecules with dimensions comparable to the wave=-
length of the 1ight, it becomes necessary to consider the
interference between light waves scattered from differemt



segments of the same molecule. It is clear that this will
affect the angular distribution of the scattered intemnsity,
and,. from this angular dist.:ribution, information concerning

the dimensions of the molecule can be obtalned.. Following

the sagme procedure used in the theory of the scattering of
X-rays by a gas, Depye (6, 7) evaluates the angular dis—
tribution due to interference, P ('@ ), by né_ans of the relation

o ~ (T T mE) .

ﬂ.cf“

vhere

= 250 % s (1.2)

18 the distance between segments m and n, and the average
(indicated by the angular brackets) is over all configuratioms.
If one assumes that r,, 1s distributed normally with disper-
sion proportional to men, which is a consequence of the
simple statistical models discussed in the next section,
the average over all configurations and summation glves

pey- L[ - o] s
vhers

t .
ws Z2 KD

Q.k)
and {r') is the mean square end to end separation of the
‘chain. This result has also been obtalned by Zimm (54), who
in addition finds in the first spproximation the effect of
interactions between molecules. His result can be written
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vhere M 1s the molecular weight, and ¢ is the concentration
by welght of the solutey I(@ ) is the intensity scattered
at an angle © ; and X; 1s a parameter that depends upon

the polymer-solvent interaction, belng larger ‘the better the
solvent. { depends on the indices of refraction of solvent
and solute, and upon the wavelength of the radiationm. It
also contains the angular dependence of the small particle
scattering. Most experimental procedures (36, 42, 43, 55)
use linearly polarized light and observe scattering in the
plane perpendicular to the direction of polarization, so
that there is no angular dependence of t¢e The experimental
results are extrapolated to infinite dilution, and then

the ("/I)‘_. vs. sin'.g plot is extrapolated to 9-0 .

The molecular weight M is obtained from the intercept, and
{r*) 1s determined from the initlal slope. Although the
calculation mentioned here involves an assumption of a dis-
tribution for r,, 5 it will be shown in Appendix A that this
procedure gives the mean square distance of the eiementary

scztterers from the center of gravity of the molecule,

' independent of the distribution,

In practice, even with careful fractionation, the solute
wvill contain a distribution of molecules with different
degrees of polymerization. If ¢; is the concentration by



welght of molecules with molecular weight Mi, them the M
calculated by the above procedure will be the weight average
molecular weight, M,, defined by the relation_

M= LD M, .6
The {r*) determined by the above procedure will be averaged
somevhat differently, and to obtain the welght average, some
kmowledge mast be had of the distribution of degrees of
polymerization. Shultz (43) uses measurements in solvents
vhere &, = @ to obtain the dispersion of this distribution,
Put we shall not go into the detail of his procedure.

The measurements of Zimm (55) and Outer, Carr, Zimm (36)
were designed to show the effect of temperature and solvent
upon molecular dimensions. !I:Ee molecule is cecasiderably
nore extended in a good solvent than it is in a poor solvent,
In gocd solvents there 1s a slicht tendency for the molecule
to becocme smaller with increasing temperature, indicating _
that the chain is extended by interaction emergles con-
siderably larger than kT. In the case of poor solvents,
however, there is a positive temperature coerﬁcient.

For the problem here considered, we are not directly
interested in these effects, tut rather in the dependence
of {r*) upen M a2t a fixed temperature in a good solvent.
For this purpose we quote Shultz's (43} results on light
scattering by polyvinylacetate in methyl ethyl ketone.

By a least square fit on a log-log plot, he firds {r*) / M
proportional to &** over .a range of molecular weight from
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0.87210° to 3.46%10° gm. Cn the basis of their measure—
ments on polmeWhetMcnlate in acetone, benzene, and
chloroform, Schultz, Cantow, and Meyerhoff (42) conclude
that {r') / ™M is proportional to M®* . Their measure—
ments were over approximately the same molecular welght
range, and the values of {r')y" ranged from 600 to 3000k,

Iight scattering methods are essentially limited to
the above range. MAnother means of determining everage
polymer dimensions is by measurement of the intrinsic vis-
cosity of a polymer in solution. The intrinsic viscosity
is defined as the fractional increase in viscosity per unit
concentration, in the limit as the concentration goes to
zero, that 1is,

H Rsatutwa =~ Riotven
= - ( s ’). Q.7

C M gorvent

¥We shall not discuss any of the viscosity theories (8, 27),
but shall mention a seml-empirical method by which viscosity
measurements can be used to calculate &*) . If the polymer
is considered as a sphere (radius R.s¢) that is, impenetrable
to the solvent, it can be shown (8) that [m]~Ris [ M.
Assuming R, ~ {r*) , one has (11, 1k, &3)

1. % <"v;l: (1.8)

LY

shere § should be g constant independent of solute or
solvent, provided that the solute is a polymer of the random
cofl type. With (r*) and M obtained from light scattering
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data on many polymers over an extensive molecular weight
range, the § calculated from Eq. (1.8) 1s essentially
constant. Fer (] 1n 100 cm® /gm, M in gm./mole, and
rin cm., 9= (2.1 0.2) 10,

As a check on Eq. (1.8), the viscosity data of Schultz,
Cantow, and Meyerhoff (L42), which is given in Table 1,
will be considered. (Except for colusms marked EMP, this
data is taken from Tables V and VII of the SCM papers)

K R designates values of (r,>'lz calculated from the
Kirkwood-Riseman (27) theory, and DB designates values
calculated from the Debye~Bueche (8) theory. EMP designates
values calculated using Eq. (1.8) with $=2.1x10" . It
13 to be noted that these last values in all cases lie between
the values predicted by the two theorfes. SCM plot r*)™
against M for both the KR -nd DB theories ahd obtain parallel
lines on a log-log plot. Their results are

G~ u*" and &M ~ ¥**™ in acetone,

-Iv M and ()™ ~ M7 in benzene,
and ()M and &)™ ~ M** in chloroform.
Their final conclusicn 1s that in a good solvent, the root
meen square extension of a polymétylmethacrylate molecule
is proportional to M** .

The values of {r?) calculated from light scattering
1lie between the values calculated by the KR and DB theories,
and are in good agreement with thé empirical values, giving
additional support to the empirical result Eqe (1.8). eyt
can be calculated from Eqe (1.§) when M is determined by
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some independent means, such as from sedimentation and
diffusion constants (11). This procedure for determining

€ r*) 1is largely empirical, and unlike 1light scattering,
does not give any direct'indicétion of the actual distribution
of the segments, It is to be hoped that as additional 1light
scattering data is obtained, and uncertainties due to extrgp-
olatiéms - and incomplete lmc;wledge of polymerization dis-
tribution are reduced, that the angular distribution of the
scattered 1light can give additional informstion on the
actual distribution of segments in the chain.

3. Statistical Models
The simplest example of an unbranched chain polymer

is one having a formula of the type
Nem Bl oA oo f = e o o =& —14",

which cen also be written as A’ (— & —),, &'+ The
principal structural umit is designated by A, and x 1is the
degree of polymerization. For example, in polymethyl-
methacrylate, the prinecipal structural unit is (11, p. 25%)

COOCH,

.

CHy
The end units &' and A" are monovalent and are usuelly
.related to the principal structurzl unit. In general, in
such covalent structures, the bond angles are fixed, but a
great variety of configurations are still possible because
of rotations about bonds, both those within the structural
units, and those Joining structural units. Since the bond
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lerzths are of the same order of magnitude as atomic dimen-

sions, the over-all structure will resemble that of closely
packed spheres, arranged in such a way as to form a rather
Jagged chain. (See, for example, Fig. 1 of Reference 32.)

We shall not discuss the detalled structure of real polymers,
but shall consider highly idealized models that are useful

in predicting and understanding the physical behavior of these
molecules.

The simplest such model is the perfectly flexible chain
model. We consider a chain of t links, each link having the
tixed length 1. The chain is said to be perfectly flexible
ir there 1s no potential energy depending on the relative
orientation of the links. With the neglection of kinetiec
effects to be mentioned below, every configuration of a
perfectly flexible chain will be equally probable. We desire
to calculate ¥(t, F), where F(t, F)4F is the probability
that a chain of t links has end to end seperation T to within
df*. (For convenience, we shall henceforth refer to § (t,¥)
as "the distribution of extensions.") This problem can zlso
be formulated in terms of a random walk of t steps, each
step having fixed length 1, but random orientationjy the
problem is then to determine the probability that after
t steps one is at a directed distance ¥ (to within d#)
from the origin. For large t and for r « 1t, the distri-
bution of extensions is given by | see, for instance,

*In this work df always refers to a three dimensional

volume element, and _gdz-... refers to an integration over
ell space.
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From BEq. (1.9) it follows that the mean square extemsion,
{r*) ', is given by
() =1t (1.10)
Bquation (1.10) is an exact result valid for all ¢.
It does not depend on the approximations made in the deri-
vation of Eqe (1.%). This can be seen by calculating &ty
directly. Since

?‘ - Z .it Q.11)
it follows that
. % .
- Z <-ii'_ii> . L.12)
iss jm

For a perfectly flexible chain
KL )= T Qa3

and Eq. (1.10) follows immedistely.

If one attempts to use Eqe (1.10). to calculate {*)
for an actual polymer, with t being the degree of poly-
merization, and 1 being the C — C distance, 1.5 I (6),
one finds in general values considerably 1éss than those
obtained from experimental measurements., This will.be
illustrated by considering the results of Schultz, Cantow,
end Meyerhoff (%2) given in Table 1. The structural unit in
polymethylmethacrylate has a molecular weight of 100, so that
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the degree of polymerization of sample A (see Table 1) is
2.4 » 10* . From Eq. (1.10)

rY? = 7.0 = 108 s1.5% & = ba1 A
Comparison with Table 1 shows that the above value is several
times smaller than the experimental values.

To avoild this discrepancy, use 1s sometimes made of a
somevhat more realistic model in which there is a fixed angle ©
between consecutive links of the chain (9, 51). If one
assumes free rotation about the links, (see Fige 1), Eq.(1.12)

Jeads to
. <r"> = tf ‘_2‘2 (1.14)

k]
\vcos ©

vhere {erms independent of t are neglected.

Flg. 1
Illustration of Free Rotation

Another refinement of the model that has been considered
1s that of hindered rotation about the links (45, %6, 7)——
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that is, the rotations, instead of being free,. are restricted
by a potentiale All such models lead to.results of the form

{rt) = e o (1.15)
vhere the effective link length, lege o Wlll depend upon the
nature of the hindrances. For t sufficiently large and for
r mch less than maximm extensiony; 1t can be shown (3, 47)
that the distribution of extensions is given by Eqe (1.9)
with I replaced by X » This can be seen roughly by con-
sidering the"statistical chain element™ of Kuhn (30, 31, 32).
In a chain with local correlations (such as a fixed angle
botween consecutive links) units of T links can be taken,

-such thzt while there is a correlation between orientations

of consecutive links, there will be no appreciable correlation
between the direction of the vectors joining the emds of
these units. Thus Kuhn reduces the chain of t links with
loczl correlations to that of a perfectly flexible chain of
t/t units, for vhich the distribution is lmown to be '
Gaussian with dispersion equal to % (r‘)‘ o But we can
write

L€ b W T ltc# ’
vhich leads to the dasiréd result

¥ 2
a 3
3.9 - () oo (3E5). 16

(The above argument assumes both T and t/7 relatively large.)

In considering massless chainsg, all of the above models
have neglected kinetic effects. More generally, one can
follow a common procedure in statistical mechanics and con-
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sider a canonical ensemble of molecules, in which the density
of molecules in phase space is proportional to &/ ﬁr,‘

To determine P,(t, T) one then integrates the ensemble
density function over all of phase space consistent with

the condition that the extension of the molecule be T .

(For a discussion of the various degrees of freedom specifying
the phase space of a real chain molecule, and the approxi-
mations that are commonly made when one is only interested
in configurational properties, see for example Kubo (29). )
The integration over degrees of freedom other than the
configurational co-ordinates affects & (t, T) 1f the
results of these. integrations depend upon the configurational
co-ordinates. It is known,for example, that integration

over the momenta e_on:jugate to the configurational co-ordinates
glves (2wkT)¥2. p* , (16), vhere n is the number of
generalized co-ordinates, and D is the determinant of the
coefficients of . the generalized velocities in the expression
for the kinetic energy. Kramers (28) considers the behavior
of a system of mutually connected point masses (pearl neck=
lace model) under the action of an inhomogeneous flow of
solvent. He explicitly evaluates D for a e=sll number of
point masses, and finds that it is larger for more highly
colled configurations than it is for extended configurations.
For long chains, however, it 1s alwéys tacitly assumed that
these effects can be neglected, and we shall not consider
this point any further. Thus, for example, the perfectly
flexible chaln model startswith the basic assumption that all
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configurations of the chain are equally probable.

It has been pointed out for the case of nearest neighbor
correlations (such as fixed bond angles and hindered rotation
about bonds) that the mean square chain extension 1s given
by

drty = t L . (1.15)
8ince the correlations usually increase thé effective 1:Lnk
length, Eq. (1.15) can be used to explain partially the
discrepancy found when calculatimg {r*) using the perfectly
flexible chain model. It is seen, however, that Eqe (1.15)
predicts that {r’) is proportional to t, and this prediction
follows for any short-range correlation (47)——that 1is,
correlations between links separated by less than a fixed
number of links. Since the molecular weight M 1s proportional
to t, all the above theories predict {r*’) to be propor-
tional to the first i:cwer' of molecular welght. We have
seen, however, that experimentall.y determined values of
(r‘>. increase more rapidly than the first power of moles=
wla® - yeight,

The above discrepancy is generally attributed to the
volume exclusion effect-~that is, the faet that the location
of a segment of the chain in a particular region of space
excludes that region from occupancy by any other segment.
This is not a short-range correlationy the distribution
of each segment is affected by all other segments. A real
polymer chain may resemble a heavy rope, the effect of volume
exclusion being to disallow those figurations in which the
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rope passes through itself. In the theoretical treatment of
~this effect, however, a variation of the pearl necklace
model is most frequently used. In this model, instead of
considering the ®pearls" to t;e point masses, they are taken
to be sphericzl beads with radii small compared to the length
of the links joining theme Thus instead of considering
a continuous distribution of volume, the volume of the chain
is considered to be localized at the junctions of consecutive
linkse

Theories for the distribution of configurations of
flexible chain molecules that have treated volume exclusion
will be critically discussed and inter-related in Chapter IT.
We shall particularly consider the range of validity and the
physical significance of various approximations in the hope
of clarifying several misconceptions that have arisen. The
need for additional theoretical work will be made clear, and
succeeding chapters of this paper will consider the problem
in detail. 4n outline of these chapters will be given at
the end of Chapter II.

PN RTINS G P rio aty T e FIEVATI L B B eSS RN St T W



L A g 37 A5 a0 bk o G %l AP 8t s smmmre
My, milh ;. F .

o Gt 4 X - .
g L 2 Y Al -~ i o B R

16

CHAPTER II’
CRITICAL DISCUSSION OF THE LITERATURE ON VOLUME EXCLUSION

I. Importance of the Dimensionality of the Problem
In a paper appearing in 193%, FKuhn (30) recognized that

the volume exclusion effect was not negligible. However,
4t was not until 1949 that there appeared any theory of
chain extensions taking account of volume exclusion (12).

_From 1949 to the present time, there have been many such

theories. Before discussing these, however, we shall mentlon
some theorems, related to the excluded volume problea,
wvhich indicate the important dependence of the results upon

the dimensionality of the problem.
We have already noted the equivalence of 'a perfectly

_ﬂesible chain and a random walke In turn there is clearly

a similarity between a random walk and the Brownlan moticn
of a free particle. (See for example Chandrasekhar (3),
Chapter 2.) A path of a particle undergoing Brownian motion
1s said to have a double point if the path for infinitely
large times passes through that point twice. Paths with
double points correspond to chain configurations eliminated
from consideration by the volume exclusion effect. The
following theorems, quoted by Rubin (39), are of interest.
In an n~dimensional Brownian motion (n ¥ 1), almost all
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paths (that is all except for a set of paths having probability
zero) have no double points, whereas in a two-dimensional
Brownian motion, almost all paths come back to any neighbor-
hood of any given point infinitely many times for infinitely
large time. That 1s, in two dimensions, almost all paths
constitute an everywhere dense set. Thus we may expect volume
exclusion to be quite important in two dimensions, and
negligible in four dimensions. The physically interesting
case of three dimensions has caused considerable disagreement.
In the case of a Brownian motion in three-dimensional space,
almost 211 paths have infinitely many double points. However,
almost all paths constitute a nowhere dense set; that is,
the set of points of any path (except perhaps one having
probability zero) is not dense to any interval of space.

Thus it appears that three-dimensional probiems of this type
are significantly different from those in two or in four
dimensions, in such a way that one can not foresee with
‘conﬂdenee even the qualitative character of the effects

of wvolume exclusicn.

There are arwlogous theorems for recurrences in random
walks on regular lattices. Consider in pa.rticulér a random
walk on a generalized sguare lattice, each lattice point having
2n nearest neighbors, where n is again the dimensionality
of the space. Each step _proeeed.é from a lattice site to a
nearest neighbor, each of the 2n possible steps having
probability 1/Zn. *.With.this model, there is probabllity
orie thit the walk will Feturd to Ltz iStarting yoint 4n.-tve:
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dimensions, while in three dimensions, this probabllity is
0.35 (10).

These resglts, vhile not indicating anything definite
concerning the effect of volume exclusion in three dimensions,
at least indicate the marked dimensional dependence of the
problem.. Quite frequently in statistlcal mechanical problems
considerable insight into a three-dimensionall problem can be
gained by treating simpler probdlems in one or two dimens=

sions. Such is not the case for volume exclusion.

2. Yolume Exclusion as g Swelling Phenomenon

The rirst theory considering the effect of wvolume
exclusion upon molecular dimensions was that of Flory (12).
Subsequent papers by Flory and others (13, 14, 2, 50) have
modified some of the details of the calculation but start
with the basic assumption of Flory's original paper and
arrive at essentially the same result. -The basie assump=—
tion of Flory is that volume exclusion does not change the
form of the distribution of extensions, but affects only
the dispersion of the distribution. Thus he assumes that
the distribution, taking account of volume exclusion, is

given by

k- ]
ta‘ = '—-3 . - .L
Eo( ') ["‘vg)] QIP{ %Jx)} R (2.1)
He then writes
) = «*4ND) (2.2)

vhere (r}) is the mean square extension in the absence of
volume exclusion, and by the theories of Chapter I is

proportional to M. Flory proceeds to calculatex by
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maximizing, with respect to o« , the free emergy of mixing
of polymer and solvent. He obtains the relation .

5 - ."' - C (\- -?.)M'fz

2.3)

vhere © 1is a parameter characterizing the interaction
of polymer and solvent having the dimension of temperature.
(In a good solvent, © < 0 ) In the limit of very
large Mand for T> © , a~ H*', so that (r*d~ M™%
This result is ':ln excellent agreement with the experimeut.al
results quoted in Chapter I. Also, the temperature depen—
dence predicted by Eqe (2.3). is in accord with experiment
€36, 55)«

The baslc assumption of Flory®s theory is arbitrary,
and no theoretical justification is given in any of his
papers. To determine the reliability of these results, one
would have to know how well the expanded Gaussian approximates
the actusl distribution. The difficulty inherent in this
method, however, is that the basic assumption precludes any
possibility of actually determining the distribution.

The theory of Flory is an approximate thermodynasmic
treatment of the effect of the interacticn between polymer
snd solvente It is not a statistical theory of chain con-
figurations, the problem with vwhich we are directly concerned.

3. fhort-Ranged Correlations
Several of the earlier approaches have taken the orien—
tation of a given link to be affected only by a fixed number
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of the immediately preceding and following links, thus
enabling the problem to be reduced to that of a Markoff
chain (3%4). Montroll (35) considers a random walk on a two
dimensional square lattice, such that each step is one unit
at right angles to the previous step. He excludes "first-
order overlaps,™ that i1s closed squares, but allows closed
polygons of twelve or more steps. Thus tﬁe probability for
making a given step depends the previous three steps,
tut is independent of any of the earlier steps. Frisch, -
Collins, and Friedman (15) carry out similar calculations
on a square lattice with no overlap in either four or twelve
steps, and a diamond lattice with no overlap in six stepse
King (25, 26) considers by punched ezrd methods a polymer
on a tetrahedral lattice. He takes sliding segments of
twenty links whose configurations he. assumes .to be independent
of any outside segments. |

Frisch, Collins and Friedman do not arrive at any
definite conclusion, Both Montroll ard King are led to
the conclusion that the extension ¥ is still normally
distributed, with {r*) proportional to the number of links
(steps) in the chain (walk). As both Montroll (35) and
Tehen (47) have noted, this result is to be expected for
chains with any type of short-range correlation. However,
the essentlal feature of the volume exclusion problem is that

interactions between all parts of the chain mmst be considered.

Any approach that considers only short-range correlationms,
and thus makes the problem equivalent to a Markoff process,

()
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misses the essential and difficult feature of the volume

excluslion j:roblem.

%o Distritution of Extensions as a Definite Integral

Several eamthors (17, 38, 41, 48) have essentially
considered the phase integral of an ensemble density function
for a pearl necklace model with rigid sphere or other short
range 1nteraction~s¥, in which the effects of all but the -
configurational co-ordinates are neglected, and the inte—
gration over the configurational co-ordinates is subject
to the condition that the chain has fixed extension T. The
resulting integral, a function of T, is proportional to the
_relative number of configurations of a chain with extension
. From this function, which we have called the distribution
of extensions, <r*) can be directly evaluated.

s is pointed out by Zimm, Stockmayer, and Fiman (56,
Brimley's (17) model, which equates the chain of beads to an
imperfect gas in a central force field, can be imnediately
dismissed, since correlations in the positions of the beads
due to their being connected in a chain are neglected.

We shall consider here the work of Eubin (38),

#We are using "short-range correlation® and Wshort-

range interactiom® in decidedly different senses. The correla-

tion refers to the orientation of the links in the chain, and
the correlation is short ranged if the orientation of a given
link is affected only by a fixed number of the immediately
preceding and following links, The interaction refers to the
forces between pairs of beads, and is of short range if these
forces are appreciable only for small 'spatial separations of
the beads. Thus an account of the volume exclusion effect
for a pearl necklace model must consider long-range correla-
tions but short-range interactionse

NI
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Teramoto (48) and Bueche (2, Secte. I)j the approximations

of Saito (41) are best understood in terms of material
discussed in the next section of this chapter. For con--
venlence in deseription, we shall ocutline the general for-
malism for the case of a pearl necklace of t+1 beads
comected by t links, each of length 1. Ve define a factor Ay
wvhich 1s zero when beads 1 and j interfere, and one otherwise.
The relative number of configurations having extension T

is given by

3 (F) = X Sdi’.---dﬁ, SG-9 I Aq -
LS AT
Tetting - -
. eq = Aq .‘ (2.5)

and expanding, we obtain
i.(tﬁ) a Sgdi‘-: - olfy E-o- 2 & 022&5 Eop e ]S(ﬁ-?)‘ (2.6)

where the first sum goes over all palrs of beads, the
second sum over all doublet of pairs, and so on. Neglecting
all but the first two terms in the bracketed expression in
-Eq. (2.6), both Teramoto and Bueche obtaln essentially the

same result:

3
L ;
) = 1 t[l « k()L J’ €2.7)
vhere the constant k depends on the details of the model,
and b 1s the effective diameter of the beads. While it is
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true that the additicnal factors in Eqe. (2.6) would give
serrections depending on higher powers of bfl , it is not
true that these corrections are negligible for very large t.
In fact, as Rubin shows, the additional terms depend on
higher powers of t, and hence for fixed /1 , become very
large in the limit of large t. The range of validity of
Eq. (2.7) is indicated by James (2%), whose work will be
discussed in the following section.

Rubin (38) recognizes that the higher order terms in
Eqe (2.6) are important, but he is not able to obtain an
explicit general result, taking account of all interactions.
He then states that,1f one considers only a restricted
class of interactions, (r’-) can easily be calculated.
This class of interactions has the characteristic that when
beads 1 and § interact, there are no interactions involving
intermediate beads. (A similar approximation will be con~
sidered in Chapter IV.) It is to be emphasized, however,
that while BRubin states that he will consider this approxi-
mation, he actually does not.
One can therefore calculate separately the increase in
( <r:>) 3 caused by the interference of the §*™ and
{os™ (beads) and sum up the increments & to obtain the
total increase., §; 1is a useful quantity sinece it is an
upper bound on the increase in size caused by the inter-
action of the j» and jes™ (beads) when intermediate
(beads) interact. The reason for this fact is that the
interaction of intermediate - (beads) increases the average
distance between the j* and j+s* (beads) and therefore
decreases_the contribution of thelr interaction to .-
( < r? >) =,
Tquoted from page 19%3 of reference 38. Ta conform

to the terminology and notatlon we have been using, the word
"step" has been replaced by "bead" and <R,}) has been

replaced by £r*> .




This approximation is by no means equivalent to the one
originally describeds In fact by comparing Rubin's Eqse
(24) and (36) with his general result Eqe. (12), it is seen
that his actual approximation, like that of Bueche and
Teramoto, is to include only the first sum in our Eq. (2.6)5
and he 1s led, like them, to a correction in {r') that is
proportional to t¥* . Rubin, by the argument we have quoted
ebove, says that this gives an upper bommd to {r*).

That Rubin does not do what he originally says he 1is
going to do, does not, of course, have any bearing on the
validity of the conclusion he obtains from the calculation
he actually makes. However, the last sentence of the material
quoted from Rubin is open to question. The fact that the
interaction of intermediate beads increases the average
distance between the §™ and (M)“' beads, only means that
the probébility for interference of these beads has been
over-estimated. It does not mean that the contribution to

{r*?) has been over estimated; that will depend upon whether
the over-estimation of the probability for interferénce of -
the §™ and (j+s)" beads is more important for configurations
with large extension or for configurations with small
extension. Thus Rubin inappropriately discusses the mag~
nitude of the probability for interference when it is the
gradient with respect to T of this quahtity that is sig-

- nifieant.
- Even more important, James (24) gives a counter-example
showing that Rubin's upper limit is based on an assumption
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that is not mathematically rigorouse There is no reason to
suppose that the sum of increments of {r®) due to several
effects 1s an upper limit on the increment due to all effects
acting together, or that a similér relation holds for upper
limits of increments; for example, the effects may co-operate
and reinforce each other. Thus, the conclusion of Rubin,
.yhile not necessarily incorrect, does not appear to be Jjus-
tified.
5. Integro-Difference Equatlons

Following a common procedure in random flight problems,
many authors (18, 19, 21, 22, 23, 24, 52, 56) have considered
the formlation of the excluded volume problem by means of
integro-difference equations. Again, it will be convenient
to develop some of the formalism here, before discussing
these paperse

Ve .consider a pearl necklace model, such that, in the
absence of interactions, the probability that a link has a
length between s and s+ds is given byEﬂ's' g(s)dsl. By ~
definition g(s) is normalized; that is

SJ3 9(s) = 41rra.s stq) = 1. .5

The mean-square link length is given by

- 4 y
‘ds 9(s)s* = «S:ds-s gty = 1.' (2.9)
We define 3_(t,T)AT to be the total weight of all -
configurations of a chain of t links with ends separated by
T (to within d¥), subject to the following basic assumption
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concerning weights The weight W given to a configuration
vith link lengths 3;, £°1, 2, ..., t, 15 given by

W 0 if any two beads interfere,
(2.10)

* -
o 388)els  1f there are no interferences.

This assumption reduces to that of giving equal weight to
all configurations comtaining no interferences when the
links have fixed length, and is a natural generalization
for the more general case where the link lengths are des-
eribed by a distribution g(s).

By considering the possibility of adding another
1ink to the chain, one can write (21, 22, 23, 24).

g, (enf) = (el g RGPV (3,7-3) (2.11)
shere ¥ (t, 2, $-8) is the fraction of cases in which ane
can add a link of extension S to a chain of t links and
extension T-§ without overlapping any other bead in the chain.
¥s shall call the product,.

Q5 73) = QY (£ 3,83), (2.12)
the ®"transition weight.® Taking account of volume
exclusion, James (24) obtains the following .relation for the
transition weights.

Qlt,3,#-3) = acs\[ ~wFly®-31:¥ )] i (2.13)

where F(t, T-£3T). 1s the density of beads at ¥ when the t™
bead is at ¥-5, and the "excluded volume"™ v is equal to
elght times the volume of a bead, and is assumed to be sagll
compared to 1°
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& detalled systematic formulation of the problem will
be given in the next chapter, where Eqe (2.13) will be
derived, and F(t, T-8: F) and v will be more precisely
defined. The fact that Eqse (2.11) and (2.13) are consistent
vith the basic assumption of Eqe (2.10) will also be seen
to be an immediate consequencel of the derivation given in
the next chapter.

8+ Normalization of the Transition Welght

Since the transition weight given by Eq. (2.13) is not
normalized, the & (t, %) calculated from Eqe (2.11) will
not be normalized, From Eq. (2.10) it can be shown that
Idl‘" 3.(tF) gives the probability that there are no
interferences in a chain of t links. Hermans (22), and
Hermans, Klamkin, and Ullman (23, henceforth referred to as
HKU) multiply the transition weight given by Eqe (2.13)
by a normalizing factor, so that the ®,(t, ¥) calculated
from Eqe (2.11) will be normalized. However, the &, (t,T)
so calcnlated would not be weighted according to our basic
assumption, Eqe (2.,10). This has been pointed out by
Suzukt: . (44). in criticism of Mantroll (35}, and by James (24)
in criticism of HKU (23). Since this point is apparently
still causing confusion, [e.g. Wall (52)], it may be well
to rephrase the argument here. We shall first illustrate
the error due to using a normalized transition weight by
considering a chain of six links cn a two-dimemsional square
lattlice, where successive links are required to be perpen=
dicular. The total number of configurations of this chain is



4 x 2% 128. 0Of these, a simple enumeration shows that
64 involve double occupancies, so that there are only 64
remaining allowable configurations. Our basic assumption for
this lattice, corresponding to Eq. (2.10), is that all allow-
able configurations have equal probability 1/5%. If, on the
other hand, we were to compute the probability of these . |
configurations using normalized transition welchts, we would
consider each configuration as built up by adding successive
links, with the probability of a given orientation of the
1link at each step equal to the reciprocal of the number of
possible orientations for that link. With this weighting

we would have for the respective probabilities of config-

urations a, by, ¢ of Fig. 2

)
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Ilustration of the Effect of
Normaliged Transition Weights
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which does not corresimnd to the basic assumption of equal

welghts.. It 1s easily seen that normalization of the tran-
sition weights tends to underweight the more extended
configurations of the chain, and hence under-estimate the

volume exclusion effect.
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Vhen the transition welght is normalized, the volume
exclusion effect is only manifest in the dlssymmetry of the
transition weight at a given pointy that 1s, it is more
probable for the next link to gol gway from rather than towards
the fixed end of the chain. Thls, however, 1s a secondary
effect. The dominant effect is due to the fact that the
transition weight depends upon the point at which the add-
itional link is to be added, being greater the further
this point is from the origin. Normalization of the tran~-
sition weight loses this effect. ) .

It should be emphasized that it is necessary to make
some basic assumption concerning the assignment of welghts.
If one is to neglect the effect of kinetic factors, Eq. (2,10}
15 certainly the most reasonable choice. Unfortunstely,
in many works no such assumption is explicitly stated, and
the physical significance of the actual assumption 1s hidden
in the mathematical formalism.

be Distribution of an Interior Beed

Bueche (2) has criticized the general approach that
uses Eq. (2.11), specifically referring only to HKU. His
ergument is that in considering the building up of the chain
1link by link, proper cognlzance 1s not takem of the fact
that the distribution of a given bead 1s also affected by
the following beads in the chain, It will not be maintained
here, and it certainly is not true, that @ (t, T) will
give the distribution of the t“ bead when there are more
than £ links in the chain--that 1s, vhen the ¢ bead is an
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interior bead. The formaljsm that has been outlined here,

and that will be developed in detall in the next chapter,
1s one for calculating the distribution of ome end aMt
the other fixed end of the chain. It will be shown in
Appendix D how the theory can be modified to comsider the
distritution of an interior bead. '

We have actually consldered only a speclal case of
the HKU theory, since that theory was designed to consider
the distribution of an interior bead. Thelr basic integro-—
difference equation relates the distribution of the ™
and (t+1)"beads in a chain of N links, N % t+1. Although
EKU attempt.  to improve upon the transition weight used
by Hermans (22), it has been pointed out by James, that,
in addition to the question of normalization, the transition
weight of HKU is arbitrary when concerned with an interior
bead, The formylation of Zimm, Stockmayer, and Fixman (56)
avolds the errors and arbitrary features of HXU, but they
are left with expressions they can evaluate only in an
approximation they reaslize to be inadequate for ‘large te
They reach no specific conclusion, but conjecture, contrary
to HKU, that <r*»/[t. increases without limit as t+,

Ce. Work of Hadwiger
A brief discussion of the work of Hadwiger (21) will
new be given, not because of any intrinsic interest of this
work, but because it has been widely misquoted in the
literature (24, 38, 52, 56) as indicating that <> [t
approaches a finite limit as t-» * . Actually Hadwiger's

L)



results are essentially identical with the James? result,
vhich predicts a divergemce of r2 / t. Hadwiger
arbitrarily assumes that the density of beads at T, when
the end of the chain 1s at T-35, is linear in [¥<B] -r.
As 1s pointed out by HKU (23), this would be a reasonable
eprroximation for r ») s, provided the proportionality ‘
constant is tsken to be ™ dependent, vhich Eadwiger does
not do. The partial differential equation for @,(t, T)
derived by Hadwiger, while not the same as the equation
derived by James, has the same solution except for factors
affecting the normalization. Hadwiger's basic assumption
is certainly unjustified, and the similarity of his result
to that of James appears to be a mathematical accident.
It should be mentioned that (contrary to an impression given
"by Bqe (5) of HEKU) Hadwiger's transition weight is
ynnormalized, In fzet it can easily be shown that if Hadwiger
had normalized his transition weight, his dominant correctiem
term would not occur.
" de The Work of James

In succeeding chapters, James'! (24) results will be
considered in considerable detail in an attempt to extend
that theory. However, for the purpose of summarizing the
significance of the approximations of the theories mentioned
in this and the previous section, and to indicate the
necessity for additional work, it will I'be useful to
summarize James' results here.

By sultable expansions and approximations, the basic
-dntegral equation was rewritten in the form
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As 8 first approximation, F was replaced by Fo 3 the value
in the absence of volume exclusion, and the solution of
Eqe (2.14) was then found to be
32 ;
> - vt 2
&, (tF) - _Lt') exp (-evt vc‘v‘t)e:p{l(r-i—“- }

Be) e ==y
vhere ¢ and ¢’ are positive constants the values of which
will be given laters. The distribution given by Eqe (2.15)
can be characterized as a displaced Gaussian distribution.-
For vt™¢ 1, it follows from Eq. (2.15) that

(2.16)

L]

<‘-‘) = t[\+ 53- -g—i,\slzut'h-b higher gowers of vt"‘]

It 1s interesting to note that if the entire right hand side
of Eqe (2.14) were approximated, insteed of only F(t,F:F),
that the effect of volume exclusion would be to add a term
proportional to v to the distribution funetion, leading only
to the first-order correction term in Eq. (2.16). Saito
(4I} and Grimley(18, 19) make just such an approximation
and sre thus led to the conclusion that {r*) increases

as t"" + This approximation is equivalent to keeping only
the first correction term in Eqe (2.6). A4s has.been mentioned,
Bueche (2) and Teramoto (46), hsmg‘this approximation, have
been led to the same result. [Seé Eqe (2.7!.] However,
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it 1s apparent from Eqe (2.,16) that an expansion in powers
of v is not a useful approach for calculating {r?) in
the 1imit of large te. As we have seen, it is also unjusti-
fiable to conslder the first-order correction term as
giving an upper bound on &*D .

7 TPor vt®» |, 1t follows formally from Eqe (2.15)
(although James notes that this is outside the actual range
of validity of his theory) that

Ly E Lt €2.17)
Thus, on the basis of a first-order perturbaticn calculation,
Jemes predicts the divergence of &ed [t for large t,
although the nature of this divergence is not clear. This
is contrary to the results cﬁ‘ Hermens (22), HKU (23), and
Wall (52) vho conclude. that {r?) lt approaches a finite
1imit as t=°, Their conclusion, however, is readily
attributed to the faulty weighting that was discussed under
sub~heading a.

James® results are based upon a first-order
perturbation calculation in which F(t,F:#) 1s replaced by
F,(t,T: T)o* It is clear that when a first-order
perturbation caleuiatj.on gives a large correction, the
reliability of these results is uncertain, and a second~order
calculation is desirables

6. Monte Carlo Calcujations

Recently, Wall, Hiller, and Wheeler (53) have

considered the excluded volume problem by generating random

= *The criticism of HKU by Rubin (u0) 1s essentially
a criticism of the replacement of F by Fee
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walks on regular lattices, using the electronic digital
computer (ILLIAC) at the University of Illinois. Correct
welghting was assured by having the walk stert over whenever
there was a return to a lattice point previously occupled, end
by giving equal weight to each successful walk--a successful
walk corresponding to a configuration without interferencese
The disadvantage of this procedure 1s that an exceptionally
large number of wélks must be started to obtain a moderate
number of successful walks for more than, say, 100 stepse
Because of this, the preliminary results reported were stati_s-
tically inadequate to describe the behavior of {r*) [t for
large t, althéu.gh the tentative result (,ri) ~ t% vas
reported. The main conclusion of this preliminary work
i1s the already known result that the number of allowable
configurations decreases exponentially with t.

" More recently, Rosenbluth and Rosenbluth (37) have
made similar calculations on a three-dimensional cubic
Iattice and a two-dimensional square lattice using the
electronic digital computer (MANIAC) at the Los Alamos
Scientific Laboratory. Their procedure has the significant
advantage that the walk does not start over whemever there
is a return to'a prev:l.orusl} occupled site--the machine just
makes another choice.®* This procedure zlone would give the
incorrect welghting cori-esponding to the norm=lized transition

3T, however, a lattice site 1s reached such that
all nearest neighbor sites have been previously occupied,
the walk is terminated and begun anewe
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welghts discussed previously. Consider speeifically the

three<dimensional cubic lattice where each lattice point
‘has six nearest neighbors. Assume that after T-! steps
we find ourselves at a lattice point such that there are
Ny possible choices for the next step; 0%€ X 5, vhere N
i1s the number of nearest neighbor sites that have not beem '
previously occupied. Consider two allowable configurations
of t steps such that for (a) N¢ = 5 for all t, and for
(bY Ne = 5for Te= 0, 1, eeey t-1, and Ng = 1, Since
the last step of configuration (b) is added with probability
one, this coﬁfiguration will be generated (on the average)
five times more frequently than configuration (a)e Therefore
to confaorm to the basic assumption that each allowable
eonfigurati&n be given equel welght, the configurations
generated are not to be given equal weights, but welght
We determined by the relation
W, = 1\‘s"t Wer, (Wi - (2.18)
Rosenbluth and Rosenbluth (37) use the above weighting
procedure to calculate the mean square extension of chains
of up to 64 links. (In three dimemsions, %769 chains of
64 links were generated.) Their results are
{rid~ t"'n . in three dimensions, (2.19)
<™>~ £ 1y two dimensions. (2.20)
There 1s a remarkable agreement between the result of Eq.
€2.19) and the preliminary results reported by Wall, Hiller,
and Wheeler (53) whose calculations were for iiiffefent

)



Iattices. The results are also in excellent agreement
wvith experimental results.

Wall, Hiller, and Wheeler (53) have indicated that
their calculations will be extended to more steps and to
other lattices, As additional results become available,
it would be of interest to obtain not only r*) , but also
to obtain the actual distribution function §,(t, T), and
the mean square displacement from the center of gravity, so
that light scattering data can be more properly interpreted.

While these results are extremely interesting, they
are of a semi-empirical nature, and do not obviate the
desirability of an analytic treatment of the excluded volume
problem, which will be considered in detail in succeeding

chapterse

With the use of the pearl necklace model, a

systematic mathematical formulation of the problem will be
presented im Chapter III. We shall derive a system of
integro-difference equations for the relative number of
configurations $,(tF) of a chain of t 1inks with extensien
'f,- and the corresponding relative number of configurations
% (t, F# R, , - -Ri ) vhen the chain is also required

to pass through given fixed points .ﬁ‘,-ﬁ‘., . -,-1-'?'.. . A method
of successive aporoximations for the determination of

[ ¢ » ¥) will be proposed. Both the zerotheorder
approximation {no Ivolum‘e exclusion) and the first-orde}
approximation will be obtained, making use of generating
functions and Fourier integralse The ph&sical significance

|
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of the first-order approximation will be discussed in terms
of the configurations wvhich are properly weighted by this
result. The second-order calculation will be discussed
88 far as the point to which the writer has successfully
carried ite The difficulties in adequately completing
this calculation and proceeding to higher order ealculations
w11l be mentioned.
' In Chapter IV, the integro-difference equation for
§. (t,?) vill be converted into a partial differential
equation, Eq. (2.1%), by means of a limiting procedure,
the physical significance of vhich will be discussed. The
first-order result, obtained by James (24), will be shown
to be formally vallid over a wider range of values of r than
he considers. A need for a second-order calculation will
be indicated, and a2 procedure for making this calculation
¥11lI be developed in detail. ‘Because of mathematical
difficulties that will be described, the writer has not
carried this procedure to a successful conclusione _
In Chapter V, the direct evaluation of {r') from the
partlal differential equation for §,(t,'5). will be
considered, both in the first and second approximations.
It will be shown that for large values of t, the results
are quite semsitive to the approximations made, and that
no definite conclusion concerning the limiting behavior of
{=*> [ t tor large t can be reached from these results.
In Chapter VI, we shall summarize this thesis,
particularly comparing the theory given here and elsewvhere,
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and the relevant experimental results. The inherent
difficulties in applying a perturbation procedure to the

volume exclusion problem will also be discussed.
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CHAPTER IXIT
FORMULATION OF THE THEORY

1. Degeription of the Model
We consider a chain of t+1 beads, numbered Oyl,s..t,

connected by t links, such that the apriorl probability
density for link extension ¥, in the absence of volume
excIusion, is given by

o (@ (29).

¥e have consequently chosen the rms link length to be our
unit of length.

In the absence of volume exclusion, the probability
density for finding the ends of the chain separated by a
distance T is given exactly by

() e (4F) 62

Assoclated with each bead, there is a volume v into
which the center of no other bead can enter. This 1s called
the excluded volume. For the case of spherical beads,
the excluded volume is eight times the volume of a single
bead,

We have chosen the same model as James (24) since it
will enable us to consider the effect of volume exclusion

vithout the additional complications of fixed limk lengths,.

t)
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fixed bond angle, and hindered rotations. The loeczalization
of the excluded volume in small beads, while not very
realistie, appears to take account of the salient features
of the probleme It 1s here assumed, as 1s commonly done,
that the qualitative characteristics of the effect are
independent of the form and distribution of the excluded

volume.

" 2o Integro-Difference Equationg
Our bssic assumption will be that the relative

weight of a configuration with link extensions 3 is given
by il; g(s:)ds if no two interior beads overlap, and weight
gero if there is such an overlap. (This corresponds to
giving equzl weight to all allowable conflgurations in the
case of a chain having fixed link lengthse)

Let Wy (F, yeee,Fe ) df ..c dF, be the relative weight
of a configuration of a chain of t links, with the zeroth
bead fixed at the origin, and the 1* bead, (1 = 1,2, ...,t),
in the volume element dT; surrounding T; , taking account of
volume exclusion due to all beads except the two end ones. |
This inclusion of some configurations contalning interferences
will not have an appreciable effect on the results for large
t, but the approximetion will. appreciably facilitate the
calculation.

We define @, (t, s J,, K,3.c033,,8,) aF aR, ...dRs,
¥2 I, to be the relative weight of configurations in which
the t™ bead 1s in dF about ¥, and bead i, is in dR. about
Ray A4*1,2, eee,¥e Specifically, @, , and @, are
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g2lculated from Wy in the following ways

'n("*‘ili) = f“‘ll s I‘?t-' wﬁ(ﬁ'.ﬁn " -‘..l-t..‘.. ) :(¢i'-€), (3 3)

Q‘I(t’$ H 'G,a. % i..aa) - Sdf'. "'S{‘.".. w' (a"" |?)s ('..‘-E.) x(*‘--§21(3 l‘.)

Wo define P (t, TR, 5 eeey Ry ) dfdl,...dR, to be the
relstive weight of configurations in which the t™ bead
1s in df about ¥, and some other bead is in dR. about R.,

M 1, 2’ seog e For v = O" )
. Naf = & fan- (@, WGE-RLF) - g
1s the relative weight of configurations in which the t™

bead is in dF about T regardless of the location of the

other beads.
Since beads §, and 3. czn not both be at R,

g, (5%, k) 55 Zv(w 1,80, B R). .6

L LU U
Therefore,. (o s 5s,)
g &#:R) ~ z @, (¢f:i,R)" Sdr- Idr...w - e r)_ZS(r 6
&t &t
i‘(tfiﬂuﬁa) ZZ ¢‘t|' L -:3 R ) (3'&)
‘C.t.o:;. ’
and so on.

The basic integro-difference equations of our theory
will be obtained by relating W,,, and Wy « We have

-

)
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Wy, (B B o) = We (B ) 4G B)'E,

| €3.9)
where, for rigid sphere interactions, Y is one if the 1;“'
bead does not interfere with any of beads 1,2,...,bttand
zero if it does. Ve define an interaction function €(r - r;)
that is 1 when there 1s a steric interference involving
beads 1 and t, and zero otherwises For a rigid sphere
interaction, € will be discontinuous. If we wish to consider
a more general short range interzction, an effective volume

cean still be defined by the relatiom
[df ey - v. (3.10)

since € (¥, —T:) is a short-range functien, if £(%,). is
not too strongly varying in the neighborhood of T; , we can

write

S.ﬁ,’ HATACGAER AL P 310)

_ Thus € (f, —T.) has the same integral behavior as v& (¥, - T ).

It €cdenotes €(Fy - %), ¥ is clearly given by
e ) [ .
‘; = '!I (I-G;) - I-ZG; @22 €.€ - -‘-- (.12)
e wy

¥e consider the 3t-dimensionsl configuration space. €;E€;
vilI be unequal to zero only in those regions of the space
corresponding to configurations in vhich both the 1™ and
3™  beads interfere with the t™ bead. While it is possible
for such configurations to occur without the 1“' and J""
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beads Interfering with each other, such occurrences will

not be considered. Thus it 1s assumed that W, is zero in
those regions of configuration space where €:€; and higher
order terms are mnequal to zero. (We shall consider the
implications of this approximation in more detail in Appendix
B.) It therefore follows that

w«. (-'..I. "'?tn) = wt (?l;"' :?i) 1(‘1&; ?')E- ZEG..?‘)] . =434

Equation (3.13) is the Basic equation of our theory.

From Eqs. (3.5), (3.7), (3.11), and (3.13) it readily
follows that '
B (o) = j.ﬁ-gcf-m 3.&F)-v j' drgrR E, (67 F), ()

The derivation of the corresponding eqﬁation for f, s W11
be given in detail. From Egse (3.7) and (3.13) it readily

follows that

3. (e, FiR) = Sdr. fdr W, (", r.)gb-\‘..\E— ie(ﬁ * \]ZSG\'“

)

« foioo fot w.(ﬁ,---.a)gﬁ-mi s(Rh-R) W

hl <
- i‘?‘. vee Id?' W, (7, r‘) &(r-r‘\ Z § (e R)E&(ﬁ 2y W
' Get =
+ Sdr. - de'w‘(?‘.,...‘ %) q(F-%.) 5G,- g) )
ol LT X WACRRICA TXCE A BICE n)Ze@- y. W

From Eq. (3.7)’ (2) is j‘dr‘ it‘ l'.:l!)q(f-rg).
From Eqe (3.5), (c) is

J4h BRI 5 G

In (d) we replace - o

Z E(’q“'}\ 5'5 VZ SU‘Q j)

i i

g) = B (&, ngu-k)

iy -
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to obtain
BTN (R AR RN UL PHOLY

In (b) ve replace €(F, ~F; ) by v 8 (¥, - F, ) for
J=* k. Thus, for §#+ k, (b) gives

-V I"ﬁi Iz(t,?.a E;?t) 3(‘1'?.1)-
For §=k, we have terms of the form

- S‘?. cee Id;‘.‘ Wt (?I ,"',}:) 3 (*‘*g‘x(?\:é) c&?‘_?ﬁ)
o I - I dF, @R kA aGF-R) S(h-R)e(RerTa)
2 —vfdf @R AR SGa-2)

v @ (t,R: Q) g (7-R),
Summing over k, ve get -v &, (t,R:R)g(F-R). Collecting
terms, our result is then
L geaiil)e Sa?- g (e R)9F-F) + Bt D) g (F-R)
v far F(eF R ? )3 ()
s (R R) g G-R). €3.15)

Following a simllar procedure (see Appendix C for the details
of the calculation) we obtain

B P AR = (07 B (F R R -

+ B2 ANER) 1 R R) sei-e@ ]

rav ® (&% ’i ,Ezhc'.“‘?-) -av § 4], ﬁz.i- )3 (i’-'ﬁ.)

o B

-ufar g (6,7 1R, B9,
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Proceeding in the same way, we can derive an equation
for §, that will involve §‘ In the correction term.
Thus we can bulld up a system of (t-1) equations.

To check the consistency of Eqse (3.1%), (3.15), and
(3.16), we note that in general

b

(ak, .7 R R, B) =0, & §0, R,
| €3.17)

since

-, | ENe) - (t1-{n-4))
s EnED s er-oad)

(t-n) =

is the ratio of the number of ways n beads can be fixed to
the number of ways (n-1) beads can be. fiked in:a-chain of
t links, (In a2 chain of t links, there are t-l beads that
can be assigned to the various -ﬁ; s Since the o™ and t"™
beads are restrained to the origin and T respectively.)

Setting -ﬁ. =R in Eq. (3.16), and integrating over
211 R, , we have by Eq. (3.17)

O Gt R) = 1) {ar B E) gE) « (ARERER)
i + ngzi(t RI.R)Q(? Rl) z\ll(tt R)SQ‘-R)

<avie2) § (eR: R)q(r -®) - :v&da,i.(tﬁ. &R )‘SG‘&

e et B (o5 8) 40,

collectiﬁ'g terms and dividing by (t-1), we obtain Eq. (3.15). -

Likewise, integratiom of Eq. (3.15) over all E, leads exactly
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- 3~ Generating Functiong
In attempting to solve the system of equations of which
Egs. (3.14),. (3.15) and (3.16) are the first three members,
it is useful to consider the generating functions
L Cz,i":. ﬁ-. 9o ,‘ﬁ; ) defined by the relation

¥, (2,7 3.»‘4)‘2@‘ NCRELURIS 'é-.) > (3.18)
) 1zlct.

Multiplying Eqs. (3.1%), (3.15) and (3.16) by %* and
sumning over all t, we obtain

£ Y, (5F)-3) = S“;' g(F-FIY, ) - v S#'g Y (s, PiP),

(3.19)
vy etR) = [ drgr-pvard) « wed s
-vfdihsﬁ-;.)\yl (o, 78R -avy, (3,R:8)9G-R),
(3.20)

ey i t) - S.ﬁ-ge-ﬂ UACLACI A

Jreid)eed) e vk ﬁ)su-a.)] i)
~av Y (R, R)IE-R) -v ¥, 0,82 %, R ) 9¢-3,)

vy R R, 49,
(3.21)
Ve have assumed that the order of summation with respect
- to t, and integration over all ?' can be interchanged. We
have also made use of the initial conditions
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Q‘U,?.E.'---.Ri) ) { O  fec a%o
(3.22)

The equations that result upon setting v=0 in
Egqs. (3.19), (3.20) erd (3.21) will be'de'signatec.l by (3.19),,
(3.20), , and (3.21), respectively. The following scheme of
successive approximations will now be considered.
(e) solve Eq.(3.19), for W:zz,'_f-).
(1Y Simultaneously solve Egqs. (3.20), and (3.19) for
Wiz, ana - wkz,2:R0). _
(i1} simltaneocusly solve Egs. (3.21), , (3.20) and (3.19)
for W (z,®), Y9z, ),  W(z,i R, ,E. ).
Inversion of the transformation Eqe (3.18) would then enable
us to obtain the successive approximations to $.(t,F);
that 1s, §‘:’(t,i-),.' 3(t,2), §?(t,?), and so on.

%.. Solution of the Intesral Equation
In this calculation, one must solve integral equations
of the form

- + AR g (F-¥ ¥ .
y(#) = £ Sd‘t" q(F-+Y Y (@) (3.23)

his 1s most simply accomplished by the use of Fourier
integrals, (49). We define

32 S R
Yw) (3‘" ) ¥ > (3.24)
and define G(H) and F(A) similarly to be the transforms. of
g(?) and £(¥). The Fourier transform of Eq. (3.23) can



then be simply written as
Cy(a) = F@) @Y GR)YW),
(3.25)

so that, 2.8
RIS ikd
2

' F'(“-)
v(¥) - (‘aﬁ I —ax VR G (&) . (3.26)

The above procedure is of course purely formal, but the

conditions of validity are so broad (49) that we need

expect no difficulty with the functions of this theory.
In this chapter we are speéifically considering

a® = (2 Pexp (37). (3.27)

A straight forward integration shows that the Fourler transform
of g(*) is given by

6(8) = @)e '“‘/‘ | (3.28)

'So that Eq. (3.26) becomes
_F@) s
vory ()" [z ERL o2 )

5. Solution for v~ 0
The first step in the method of successive approximations
previously outlined is the soIution of Eqe (3.19), ¢
W (2,7) = 29C0) + 2 fapracmry o o 7,
(3'19.10
By the use of Egs. (3.28) and (3.29), one can immediately
write the solution of this equation as



- . 3 - -ul/s ~FR
V) -] e E““ T ek ¢ (3.30)
T e
t=
- 3.
. z 3 (;3:) “exp S5
L 17§ 6031)

Gomparison with Eq. (3.18) shows that _
w s [3 YR _a ™ .
3, ) (a?a) exp (3T). G.32)
This is the well known distribution function in the absence

of volume exclusion.

6. First Approximation
We now consider Eq. (3.20),

Wi R)- 2P (eR)q0R) ¢ 2 {uf g3y (2,71 7),

(3.20),
the Fourier transform of which 1s
PO (eaR) - ¥ eR)6() e ) 2 Y e R),

(3.33)

Therefore, by Eqse (3.28) and (3.29)

- i B

3 o) o
O )Y (z,k)zjd& e & ;
¥ (x,%:R) &) PEYTD - (3.34)

Comparison of Egse (3.34) and (3.30) shows that one can
write
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"l.‘ (‘.?=§) - W:‘,(tii) l"om(lt ?--ﬁ )'
. (3.39)
Since the product of ¥'s corresponds to the comnvolution of

]
the corresponding $s s we have thus

3" () = Z G B,

jus

(3.36)
and in particulgr

LD Z 8 G 3, wis?).
3=

&mation (3.37) has a simple interpretation. The
exzct value of v § (t, T:T) df gives the relative weight of

B3.37)

configurations in which the t” bead is in d¥ about r, and
there 1s an interference between the £ bead and an interior
bezd; but no interferences involving any pair of interior
beads. (See Fig. 3.) It follovs

,:’"\\:;

.—-n

Fig. 3
& Configuration COntrigntgng to v, (¢, #:F)
froz Eq. (3.7) that
) .
3, (8, F:7) = z DR CRES e ), G.3)
i

vhere

o (67 t3,F) = Bl F)RG0) plio: i F), (3.39)
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and p(i,0:+3,T) 15 the probabllity that there are no

interferences between a chain of (t-§ ) links having
extension ':", and a closed loop of j links, the closure
being at T. (See Fig. 3). Comparison of Eq. (3.37) with
Eqs. (3.38) and (3.39) shows that the approximation given
by Eqe (3.37) does not take account of interactions within
the closed loop, and vhat is even more important, does not
take account_ of interactions between the closed loop and
the rest of the chain.

To- proceed with the solution, we replace ¥, in
Eq. (3.19) by ¥ as given in Eq. (3.35) to obtain

YO (2, F)~ 290) + 2 |-u‘V."’(!;°)-J vgd?.‘lﬁ'?')w-m(‘-#'), (3.40)

vhere ' - S““' o e
W (i'°) B l-& O."‘" (3.41)

.(-ﬁ.)"‘z x.

| X7)
As solution of Eq. (3.40) we have, by the method of Sectionk

o e -iva
v )= (3 ) S“"‘ A £ (3.42)
vhere
() = zt ~v s ‘(‘t&)] g (3.143)

By again expanding the denominator, we obtain from Bg. (3.42)

\V:‘ (e,F) = 2 i A.kﬂ (l‘t), exe .i—'_ (3.44)

b <1]
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from which it follows that one can write
) = e e (345)

h 7Y -

vhere ¢ i (t) equals the coefficlent of ' in
. Y T i T
L@ e}

While Eq.(3.45) is not in convenient form for
computation, it does permit an interesting interpretation.
3In explicit form, we can write Eqe (3.45) as

(L] -
e - 2D
i {eomen s gilan. -

@} = {9 ()T ey v}

(3.46)

$ eee

The v independent term gives the relatlve number of configura=-

‘tions;uvomitting volume exclusion. The terms proportional

to v subtract with welght N configurations containing N
Anterferences. Thus (t-2)(& My To e, F) gives the
relative number of single link loops. (t-3) (x’ﬁ\"‘;’ i §:ﬁ“"-?)
gives the relative number of loops of two links, and so0 one
Clearly by this procedure we subtract out too many
configurations, since if there are two interferences in the
seme configuration, this configuration will be subtracted
twice, and so on. The v - terms over-compensate for this
by adding back configurations with non-overlapping pairs of
interferences. Thus (‘1‘:?? vt (‘;s)Q: ’(t-a,'r') gives the
relative num:ner of configurations with pairs of single link
loopsy (& ot (';‘)'a"fh g eeny ) gives the relative
number of non-overlapping pairs of single link and double



link loops, and so on. (See Fig. 4). Equation (3.%6)

(=) (18}

Pairs ofﬁl':gi.:le*rferences

& e
weights the excluded configurations in the following ways
It gives the configuration weight 1 for each single
interference, weight <1 for each palr of separate
non-overlapping interferences, yzeight 1 for each trio-of
separate non-overlapping interferences, and so one. Ideally
of course, one would wish to exclude with weight one any
confima'tion containing an interference.

In order to determine the significance of such a
welghting, consider a chain divided into two sections such
that there are no interferences across the division point.
Let a; equal the number of sets of ] separate non-overlapping
closed loops that can be chosen before the division point,
and let b; equal the correspanding number after the division
point. The welght for exclusion assigned to the two parts
of the chain will be |

°«"n ‘.‘ . -
Na = '*2&0 %, %'y (3.47)

{z0
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Ng= '+ 2o by s
jre €3.47)
The weight for the entire chaln is
- 14 Z(-l)‘“ Z at-‘t (3.‘!»8)

Tso
shere Q.=0. It immedigtely follows from Egse (3.47)

and (3.48) that '
N - (Nl")(No‘ ). Cae)

Thus Eqe. (3.46) assigns the correct weight for excluslon,
Na = |, to 2ny configurgtion for vhich a point of division
exists,such that Na=! or Ng=1 » By induction, it
follows easily that the correct weight Na=! 1s assigned
to every configuration in which there is an interference
between two beads, say 1 and j, but no interference between
beads on opposite sides of either the 1™ or J™ beads,

‘or between beads both of vhich are between the 1™ and 3™
beads,.

It appears likely that most configurations containing
interferences wlll contain an interference satisfying the
above condition, and will consequently be welghted correctly.
While the number of configurations which are incorrectly
weighted will be small, it must be remembered that the
relative number of configurations without any Interferences
at all (these being the configurations in which we are
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interested) 1s itself very small. Consequently a small
relative error in the number of excluded configurations

may mean a large relative error in the number of allowed
eonfigurations, There will be some compensation due to
positive and negative welghts, but all these factors make it
difficult to say how accurate the first-order calculation
really is. Clearly, a second-order calculation is desirable.

7»- Second Approximation
We now consider Eq. (3.21),
et 8 » 2[R RIER) $ O R ),(r-l!l)]

R P R R =)

It follows immediately, upon use of the same procedure as
in Section 6, that

I.“(!.? . -é..-iz) = ."V.m (!:éﬁ El ) \P.“’(i,?- R.)

A W.“ (‘;Et"acyw.(.)(laie'-ﬁl). (3.50)

Setting R, = T and B,+ R, and again using the fact that
the product of W’s is the convolution of the corresponding
!’s, we obtain - 53

E7 (7, R) - Z 34,7 R) &7G)
N [ g0k 30 L),

F i)

8,,7:7,R) gives the weight density of configurations
in vhich the end beads are at 0, T,and intermediate beads
are at T and R. It follows from Eqe (3.8) that

(3.51)
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Two cases need be distinguished, T>w and X<y = -

(3.52)

econfigurations corrésponding to each are shown in Fig. 5a
and 5b respectively. The sum in Eg. (3.52) 1s essentially
the sum over all y and<T of the weights for these configura+s'2:.

tions.

() )

Configurations which Sestribute to g, HAR)
The first sum in Eq. (3.51) corresponds to the sum over
configurations of the type shown in Fig. 5a, while the
second. sum corresponds to configurations of the type shown
in Fig 5b. The first sum, however, does not take account of
interactions within the closed loop. (Fig 5a) or between
the closed loop and the rest of the chain.. The second sum
does not take account of interactions within the part of the
chain between beads ¥ and t (Fig 5b), and does not take
account of interactions between that part of the chain and
the remainder. _

Substitution of Eq. (3.50) into Eqe (3.20) gives
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.w‘ﬁ\ (!‘f =i) - E[l -\ \P:’ (!,0’] gd?lﬂ(“.:‘.“) W.u‘ (ty?'.‘.i)
+ ||:‘“’ (z,ﬁ)g(’f-—ih' Av 77, RiR)q(F-R)e

- far g () VO @RI o, 2R )
(3.53)

The Xast integral in Eq. (3.53) makes impracticable the
further use of the Fourier transforme It 1s clear that as
one attempts to improve the caleculation, higher-order
distribution functions need be consldered, wvhich confront
one with more complicated integral equations to' solve. The
writer has not been successful in carrying the outlined
procedure beyond Eqe (3.53)e .

The result of the first approximation, while admitting
an interesting interpretation, is of llttle value as far as
numerical computation is concerned. Thus, while we have
indicated a systemgtic means of successive apprq:d.mations,
this procedure has not proved fruitful.

In the next chapter we shall consider the passage from
integral to partial -differentlial equations, a procedure that

18 common in random-flight problems.



CHAPTER IV
THE ANATL.OGOUS BOUNDARY VALUE PROBLEM

It 1s common procedure in random-flight problems to
pass from Integro-difference equations to a boundary value
problem in partial differential equations. A good description
of the method has been given by Chandrasekhar (3), and
the method has been applied to the eicluded volume problem
by several suthors, (21, 22, 23, 2%, 56).

1. The Continuous Model

" The pearl necklace model wss considered in Chapter III.
Specificglly we cénsidered a chain of t links with beads
at each juncture, such that the presence of the center of
an interior bead at a glven point in space exclude; a
surrounding volume v from occupancy by the center of any
other interior bead. (Volume exclusion d';le to the end beads
1s not considered.). The integro-difference equation obtained
gor & (t,) |Eq. (3_.1%)] can be written
Bn?) = Idg a0 623 - v (g, 73:5-9), 1)

We now conslider another model, to be ¢alled the
continuous model, which we define as the limiting form of
the peari necklace model reached by letting the number of
links per wnit rms extension become infinite, while holding

constant the excluded volume per unit rms extension. More



specifically, let us now divide each link of the pearl
necklace model into #fet sub-links, such that the a-priori
probability that a sub-link has the extension § to within
ds is given by

st 2] (2 E)e. -
Thus the mean square extension of a sub-1ink is at; the
mean square extension of the composite link; 1f interactions
within the link are neglected, is (at)(llat‘)- 1, as before.
The excluded volume associated with each sub-link will be

&V = VAL,

so that the totel excluded volume is the same as before. (h.3)
The continuous model will then be obtained by letting at
pass to the limit zero.

Let I/ be finite. If instead of mumbering the beads
by integers, we number them 0, At, 2at;eesy t-at, t, it
follows imnediately from Eqe (4.1} that
Folteat ?) - [ag ) B A i-E) - av Sdr P & (8,73 :7-3)

(lele)
We shall mzke use of the following expansions:z
Y . - t D;.tt;;) \ A a". (t‘?)
Biove, )= ) ¢ 0 TR0 G TROD, ®.5)
-8 ayd -
Bt = Beh) - 1B « JEI B,
(4.6)

L B S

and an identicel expsnsion for @ (t,r-s:r-3)e It can easily
be shown that for n$ ~2°

Jaz gt = & (&) "r (). ¢-7)
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It follows from the spherical symmetry of g*(s) and
Eqse (4.3) through (4.7) that in the limit a4t —> 0, in
vhich we go over tothercontinuous model, we obtain

l’s’r‘w) - $9 RN = v eE. (.8)
The continuous parameter t, referring to position along the
chain,. can be defined as

ts M/Mo, 4.9)

there M 1s the molecular weight of that portion of chain
extending from the origin to the point in question, and
M, is the molecular weight corresponding to a link in the
original pearl necklace model. (We consider a link to be
equivalent to the "statistical element" of Kuhn (30).) The
apriori probability that an added molecular weight &M has
extension 3 to within d3 is given by g*(s)d%, where
at=8MfM, The extension 3 has again been taken to be dimen-
sionlessy 1t (as well as all other lengths and volumes) 1s
measured in mmltiples of the rms extension of the statistical

element.
The excluded volume v can be interpreted in terms of

known physical properties of long chain molecules. It
follows from Bqse (4.3) and (4.9). that

v AY . &Y M

at aM ("’ .10)
L a7V 1s the volume in cn® corresponding to avy, and 1 1s
the rms extension in ecm of a statistical element, 1t follows
that
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am VN

- ]

| (+.11)
vhere N is Avogadro's number, and am is' the added mass in
gramss The excluded volume 4V may not be the actual volume
of the added mass, but in terms of orders of magnitude,

aV =z
am 4 0?.12)

that
o v E M, ,
P¥ N
vherep s the density of the polymer in gm/em .
Isoprene will be considered as an example. The statistical

(+.13)

element corresponds to 2.8 monomers and has an rms extension
of 13 &, (32)e The use of Eqe (4.13) with M, = 68%2.8=190 gm.
apd P = lgm./fem® gives v3 0.1. For M=100,000, it follows
that t= 525 and vt®3 2.

A model in which the msss is mniformly distributed along
a chain would certainly be more realistic than a peari
necklace model. FHowever, the limiting procedure described
ebove does not give a uniform distribution of mass, but rather
a8 continuous model having rather peculiar properties.
Consider, for example, the geometric length of the chain,
vhich we define (in the case of the pearl necklace model)
to be the sum of the rms link lengths. Thus for the original
peerl necklace of t links, each 1link having unit rms extension,
the geometric length of the chaln equals t. After subdivision
of each link into 1/at subelinks, each sub-link has rms
extensien (At):h s 50 that the total geometrlic length of the
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subdivided chain, (At)“-:t' G%"'- s becomes infinite as at-+0.
Therefore, the contimious model does not correspond to a
c¢hain of finite length, but rather an infinite thread..

It is difficult to describe physically the excluded
volume problem directly in terms of the contimuous model.
Th addition, the model as described, leads to certain
mathematical difficulties. Thus, after subdivision, the rms
distance between consecutive beads 1s (at)’ y while the radii
of these beads is of the order (at)?. (See Eq. (%.3).).
Therefore as (8t)-> 0, the separation of consecutive beads
goes to gero more rapidly than the radil of these beads.
Consequently there will be a value of at» O for which
virtually no configuration of the chain is allowable, since
all configurations will, with a high degree of probability,
contain next neighbor interferences. To remove this difficulty,
it is necessary to include, in .the description of the
continuous model, the condition that there are fixed chain
segments (for example, the statistical chain element) within
which interferences are not considered.

Because of the arbitrary character and additional
conditions that are assoclated with the continucus model,
it will not be convenient to describe the work of this chapter
in terms of this model. Equation (4.8) was obtained by
James (24) essentially by directly expanding Eg. (%.1),
and neglecting second-order derivatives of §J,t,'i') with
respect to t, fourth-order derivatives of §(t,T) with

respect to r, and second-order derivatives of ¢ &, (t,}:)
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with respect to ro These meglections are partially justified
by the consideration of the order of magnitudé of these
quantities in the absence of volume exclusion. It will be
convenient for us to continue to use the terminology and
physical picture of the original pearl necklace model, even
though we consider the result, Eq. (4.8),of the limiting

procedure.

2. Introdpction of the Density Function F(t,#«R)

We define F(t,F:R) . by the relation

§.%:R)

. TF) | (+et)
Therefore, F(t,F:R)dR 1s the probability for finding any
bead, other than the fixed end beads, in the volume element

FLt..? t‘l) =

dR about ® when the end beads are fixed at O and F.
Equation (%.8) can then be rewritten
®Y) L @R F) = -vFlF ) ReF).
3 (4.15)
We desire a solution of Eq. (4.15); subject to the boundary
conditions that there is a source at the origin for t=0+*
such that S o) = o for Teo0,
. - - = |
Lim (a7 3 (e =1,

and for any fixed t, B(t,F)=0 asr~e . (+.16)

$Instead of a source at the orjigin for t=0, it would
be more precise to require that ©®.(%T ) =g(r). However, as
is well known in diffusion type problems, the distribution
for large values of t is relatively insensitive to the form
of the distribution for small values of t.




It will be necessary to make some approximations in
solving Eq. (4.15), since the function F(t,F:%) is not lnown.
It would be a2 poor approximation to replace the entire right
hand side of Eq. (4.15) by its value in the absence of
‘volume exclusion, because the relative number of configurations
having both an end at T and another bead in the volume v
sbout T 1s greatly affected by volume exclusion. However,
the fraction of the configurations with end at % in which
there is snother bead in v about T will be less girastica]:ly
affected, and consequently the spproximation of the fraction
F 1s a far better procedure.

For v=0, the fundamental solution of the boundary
value problem given by Eqs. (%.15) and (%.16) is the well
Inown result

32

37 = () e C45),  @an
We shall call this the zeroth-order approximation. For veO,
we shall attempt the solution of the problem by successive
approximations of F(t,T:T). The calculation of this
quantity will be discussed in the next section. In the
following sections we shall calculate F, (t,?:?), the 9alue
of r(t,r:r) in the absence of volume exclusion, and use the
result to obtain a first-order approximation of F(t,F).

A procedure for obtaining & second-order approximation will
then be discussed, although the writer has not been successful
in carrying this procedure to a fruitful conclusion.
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3+ Discussion of F(t,¥:¥)
Let fy(t,F:T) be the probability demsity for finding
the center of the t™bead at T when the end of the chain
(center of the t™ bead) is at T. Since these probabilities

are mitually exclusive
=0

F t,-’%’f) = £ Kt,?‘:?)_
( Z; ' (4.18)

Although we are still using the terminology of the pearl
necklace model, it 1s consistent with the replacement of
Eqe (4.1) by Eq. (¥.8) to replace the sum in Eq. (%.18) by

the integral
t-fp

F(t.F:7) = Ldt £ (t,F:T). r.19)

-The particular choice of %, t-as the limits of integration
i1s arbitrary, tut as will be seen later, the qualitative
features of the results are independent of this choice.
One can express f . (t,T:T) by the relation
L(“j)i“f":") p (x.F:t-x,0) ,

8, (t.¥) ' ' (%.20)
vhere p(T,T: t-t,3) is the probabdility that there are no
interferences.between a chain of T links with extension T
and a chain of t-tlinks of extension ¥ beginning at the
end -of the first chain, calcuiated taking account of volume
exclusion within the two chains,

Let p(t,T) be the probability that there are no
interferences in a chain of t links and extension ¥. Then
BaF) ~ plt, P (F), 4.21)

fle,FF) =



It follows from Eqs. (4.19), (4.20), and (4.21) that

tn
et A j . I.u(t.*)iﬂu-t.e) plz,?) p(t-x.0) p(xFrtr,0)
W T.TF) T e(eh) oo (4.22)
By the use of Eq. (4.17). and the change of variables
In !%! “023)

4t follows that
R .
retd) - (@) ¢

A-é ) .
L ok (6 x) fEf)pke,0) o 2
’L“ 4 (l K) uP (i (=] —-——-"t‘ 33 P(y t-tao) (l}.zlp)

where
r
f=F & - (1.25)

We ehall use Eqe. (4.24) to obtain successive zpproximations
to F(t,F:F) from which successive approximations to $(t,E)
cen be obtained by the solution of Eqe (4.15)e

k. Czloulation of Falt.F:I)
As a first approximation, we shall consider F,(t,F:¥),
the value of F(t,T:T) computed in the absence of volume
exclusion. It follows from Eq. (%.2lt) that

s -
Giept)= ({;)'h-b, S v:’ -u'"'(l-x)’h exp (' 3 ’.‘.‘T) .

(4+.26)
Let
| $: %o SlEE = F s (.27)
. 3 1 LA
ey RitFR)-(E _-:-,_L.g,, '—‘l;‘: ety (t+.28)

Integration by parts gives
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fepd) = (B%am exe (V) - wne (1Y)
+ @& (f"‘)tﬂfc (Ye) - et (§9),

(4.29)
vhere the complementary error function is defined as
¢ 2 r i
QP W 3 — di e
{i “ ’ 0’030)
and is given by the power series
. 3 H v
Ny "
ecfc w = ‘-éﬁ(& 34 ‘--STR-\- 731 '”")- 0*31)
For large u, the asymptotic expansion
‘ -
a e‘_’“ - 3  _ 1.3.§
ecfe w 2 S UTSE T Qi T eyt ) (+.32)
is convenient.
From Eqs. (4.25) and (4.29) it follows that
Rty s c oo (1) - & oels)
+ (# ' r,z) ["“(&iﬂ - ek (ﬁ r)] ’
(. 33)
vhere: ¥
c= (“\ ax = (W)
o - (‘*-3#)
For 2<r % O(t"), neglection of terms that are O(t™ ) an
o(e” ) leads to the result
- 11‘
ReT F) & co -a-}'—r- =% ° tr35)

Equation (4.35) is the result obtained by James (24), except
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for & slight difference in the mumerical factor o,*
Equation (4.33) is valid, however, over a much wider range
then is Eqe (¥.35)e In particular, Eq. (%.33) indicates
that for fixed t and very large r,F,(t,?:¥) decreases as
exp(-‘l‘;-:) « That this should be so can be seen from the .
following argument. For very large ry the chain will essen~
tially be straight. The integral in Eq. (4.19) considers
interactions to within half a 1ink of the end. For such
straight configurations, only thst small segment of chain
half a link removed from the end will have any appreciable
opportunity to interfere with the end. The probability
distribution of this segment will be centered arcund a point
at a distance EJ;- from the end, and the probability that
the segment is located zt this distance from the center of
1ts distribution will be proporticnal to exp(-3L).

5. Eirst Aporoximotion: Caleulaztion of Eao(t.) |
i Upon substitution of Eqe (4.39) into Eqe (4e15) theve
results a partial differential equation for the first-order

*Instead of c»(3:) %2y 28 (‘hﬂw',' the corresponding term
in the Jemes result is (i/mx¥Vie3(h)e241(/z)"2e The reason for this

difference is that we have here effectively replaced i%ﬂz’ 18

o o . Bs
by f.;-a. =g o ‘It should be emphasized that if the
limiting procedure in passing from an integro-difference
equation %o a partial differential equation is valid, then
‘the replacement of the .sum by sn integrel i1s &also vaiid.
The limlts of integration can be chosen to give numericzl
agreement between the two calculations, although there is
no reason vhy we should require this.
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approximetion to J(t,F)s
)ﬁ;:t,') - .'z. §' (tF) = -v {cq- z_‘}‘_;. ls§°‘ ) (1'1-.36)
(The first approximation defined here i1s not the same as
the first approximation defined in the previous chapter.
The connection between the two approximations will be
discussed later.) Equation (4.36) is exactly the equation
considered by James, the solution of which is found by

inspection to be

9{- t+£—v‘t+lv}
3. h - (m)’ exe (3F )exe{-ev "J. (4.37)

$(t3) satisfies the boundary conditions (sée‘!q. 0&.16)]
and also reduces for w=0 to the known solution in the
absence of volume exclusion.

It will be convenient to consider the distributiom
function expressed as a function of the variables

TR oz
and
- JE vts,
As V& v (+.38)

The distribution function D3) is defined by the relation
AEYdE = FeT)dE
D(A§ ) df (:.39)
It follows from Egse (4.17), (4.37). and (4.39) that

o) = e y 0+ 0)



and
"o % "L () bex {-wto, za‘}
0, 2,€) - h P * (Lh1)
The most probable extension § is defined as the value
of § for which §0.0.5) is maximum. Therefore, it follows

grom Eqs. (4.40) and (4.41) that
!:" -l . (‘l‘QII'Z)

3

s:,o- %—4— Jlf (r2y . .43)

By the use of Eqe. (4e35) for F,(t,7:T) we have
essentially restricted our attention to §€ 0(1l). Therefore,
by Eqe (4o%43) and similar reasoning of James (24), it follows
that the above theory leading to Eqe (4.37) is valid
over the interesting range of § only for A€ 0(1). This
restriction, however, can be removed rather simply by the
use of Eqe (%.33), vhich is also valid for §>G(1).

In particulsr let us consider A=0(t'#). Then, by
Eqe (4.43) we need to consider values of §=0(t") and hence
values of r=0(t"®). By expanding exp(’;’t'—:—). and erfre($ T
in Eqe (%.33), and neglecting terms that are G(ijt) and
0(e™'), we obtain

and

=2 - qf '}
‘F.kt‘$-“)- C*'!;'—r ?I‘T. +%. ("‘o"‘""’)
vhere
3k
Ae (2
(&) (boe5)
The effect of considering values of r as large as tﬂ‘ is to

make terms proportional to r'/t’ no longer negligible.
Corresponding to Eqe (%.36) we now have



'§at. S v 57w - -v[’ﬁ;? are A0 ]3, ).
(41:6)

It f:’(tﬁ'] is multiplied by exp ('!'-;'—-"‘), the function that
is obtained is not an exact solution of Eq. (%.46). However,
the additional terms that sould have to be added to Eqe(l.46)
to make this function a solution are terms proportional te
v , and are of the order of magnitude of terms that have
been neglected. The additional factor, exp(&‘"') 1s,
however, negligible in comparison to the dominant r-dependent
correction term, exp (3-vr) " Thus, even for vt2= o(t'™),
the James' result, Eq. (L. 37) is still formally valid. It
follows from this result that

@y Geats P Geerier) (1034 )"

~ (loz\')g(z& wica) + AN ? (4.147)
from which for small A
({__) e A+ %x ¥ ‘nigher powers of 448)

and for i
<> x 2N
< 3
(49)
[see demes (24), Bq. (%) throveh Eq. (59).] Thus

for smell values of \, 9;_‘) begins to increase as th s but
for AM1, ‘.? increases as t. It can be seen from
Eqe (4.%3) that the most probable extension exhibits the
same behuvlior.
The prediction that <{r*>/t increases as the ﬁ.rst
power of t for large values of t indicates, on the basls
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of the experimental results quoted in Chapter I, that the

first-order calculation gives an overecorrection of the volume

exclusion effect for large t. The reason for thisis clear.
We replaced F(%,T:¥) by Fo(t,TsT); that 1s,we caloulated the
probability for finding smother bead at the location of the
'l? bead, neglecting volume exclusion. The probability that
we calculate neglecting volume exclusion is larger than the
actual probability. Thls error will be largest for
configuretions with small extension, since volume exclusion
15 most important for these configurations. Thus, F, (t,F:T)
is too large for small r, and consequént],y i}t,'f‘) will be
too small for small r. For large values of t., this error
is by no means small, and consequently a more accurate -
evaluation of F(t,¥:T) is required.It will therefore be
necessary to evaluate approximately the probabilities for
no interference, p(t,%) and p(%,F: t-t,0), that appear

in the general expression for F(%t,T:T), Eq. (t.24).

6. Procedure for the Determination of p(t,F)

In Section 6 of James! paper, p(t,T) 1s calculated
npprox:hnately by a method that will presently be deseribed.
The calculations will be repeated here in a somewhat more
general way, so thot the results will be valid not only for
the large t and r= 0(t*) that James considers, but also for
anall values of t and for values of r as large as O(t¥),
We shall also formulate a general method by which p(t,¥)
can be calculated, and shall show in vhat way the James
result is a first approximation.
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We consider all configurations of a perfectly
flexible chain of t links in which the end beads—that is,
the @™ and t™ beads—-are fixed at the origin and at ¥
respectively. There are ﬁ') pairs of interlor beads that
can interfere. (We shall not consider here the effects of
ternary or higher-order interferences. ©See Appendix B -
for a discussion of this question.) These palrs are
pumbered by the single index ¥=1, 2yee.e, (9')e Let
¥, (t,T) be the relative number of configurations in which
the v"pair interfere, regardless of any other interference
that may be present. Likewise let N,. (t,T) be the relative
number of configurations in which both the v* and * pairs
interfere, again regardless of any other interference that
may be present, and so on. If P(t,T) is the relative
number of configurstions contalning no interferences, and
B2(t, %) the relative number regardless of interferences,

then &)
B0 = AN -TNED + D N F) - -

_ (4.50)
It 1s easy to see that Eqe (4.50) gives welght zerc to any
eonfiguration containing an interference. Consider, ro.i-
exsmple, a configuration containing n interferences. It

is given weight +1 by the first term on the right hand side,
wveight -(:') by the next, weight (3) by the next, and so on.

Since R ] .
E(—‘\‘ k":) - ‘(‘—!3 - Q N 0’051)
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the total weight given to this configuration is zero.
The probability that there are no interferences 1s

given by

pesty = 2A)

(7]
§ (t,l‘) . @021)
Likewise, the probability that the #™ pair interfere
regardless of any other interference, P,(t,T), is given by

"3 Ny(t!r)
L ]
b(&7 ) TOEF) (t 1-) , . 52)
Divide Eq. m.so) by ®{t,F); it can then be written as

plt) - l-ZP AREIORRR IR

v nrenh (+.53)
vhere the B, Py Buay -ocare the normalized values of
Boy Nouy Nuuny oee respectivelye |
We define the conditional probabilitles

| fm:.«- = Py,./fv 0‘09’)

Levarin = P"“‘/E 3
“ (455)

and so on. Theréfore P,y.. is the fraction of the
configurations having the ¥* pair interfere in which the a™
pair interferes; that is, it is the conditional probability
for :lnterferencé A subject to the occurrence of interference
¥ « The other conditional probabilities are defined :
snalogously. It then follows that
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We now define
o (+.57)

TR,

. (4. 58)
rh\ = ‘Zm E("‘*“ “ZP"PM*/ZE
“a IZ"Z P-p '/Z._P,, (459 :
—_—  ——
ta = Z ng,.) S Y ZE Z P,,. Pgw..\‘; er
Alana) YA AR »om b
3izz Pmi ZZ r..,. s
e (%.60)

and so on. Thus fm is the sum over all pairs of the
probability for the interference of a pair. P is the sum
over all pairs (#») of the probability for interference of
a pair subject to the interference of the V”'pa':lr, averaged
over all ¥ and so on.

© ¥ith the definitions of Egs. (4.57), (4.58), (4.59)
and (4.60), Eq. (4.53) can be rewritten in the following

simple forms
59

7Y = ‘:_'l'ITP
PR Z-:- #oam (+.61)

The second method of James calculates p(t,T) using
the aporoximation that the probabilitles for non-interference
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are independent. Thus

e,y =T (1-R) +.62)
« -TR +TLRL-TTY LAL -
» [ R Y"1
z - " 2.'% - B, ...
)
- % Q;ll‘ ?l‘). .
e ¥ ’ (4.63)

Comparison of Eqs. (4.61) and (4.63) shows that the
approximation made in replacing e(t,¥) by e(t,7) is essen-
tially equivalent to assuming

o 2l 2 TR (4.6%)
This relation is of course satisfied if the conditional
probabilities defined by Egs. (4.54) and (4.55) are the
same as the unconditional probability E.. - This is not
necessary, however, to satisfy Eg. (h.6§)'. A1l that
assumption (4.64) requires is that the sum over &ll pairs
of a conditional probabil‘l'ty averaged over the "condltions™
is the same as the sum over all pairs of the unconditional
probability.

It is a reasonable first approximation to assume that
the probabilities for non-interference ars independent, since
the Xnowledge that beads m and n do not interfere does not
appreciably restrict their distributions. On the other
hand, the assumption that the probabllitles for interierence
are independent would be a very poor approximat;l.on, because
the knowledge of the interference of m and n considerably
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enhances the likelihood, for example, that beads (m+l) and
(h-1) interfere. This approximation is equivalent to con-
sidering only the first sumation term in Eqe (%.56), and
is essentially the approximation used by Bueche (2),

Teramoto (48), and Rubin(38), whose works were criticized in
Chayiter IT. ¥e shall use the much more reasonable approx-
imation given by Eqe (4+.62).

7. Calculation of gft,F)
Let the index yrefer to the pair of bezds m,n. The
probability thot m and n interfere regardless of any other

interferences is given by .

- Ty Y o, o T2
pe)s DT et D)
[#] @ B0 E 0,5 B (e men, 7331

C+65)
which reduces to
pltF)= ° L(m-n,o) §:ﬂ(t-m+n,?") .
3@ (e, 1) (4.66)
It follows from Bgs. (4.58) and (4.66) that

?.(t T) = 'U’z Z. i‘ ;’;" +9) im(t-mw\ r)

mrn

(%+.67)
For a given {m-n, there are t-l-§ equal terms in the
above sum. Therefore,

P » v Z«-t-ﬂ( M Gaa] e tasd,).
(4.68)
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¥ith negligible error, we can replace (t-1-§ ) by (t-j)
and change the npper 1limit of summation to t-1 to obtaln
Ed <3t 3 () e (2 o).
& (+69)
We again replace the sum by an integral from % to t-4 and
use the substitution

g ife (+.70)
to obtain "
PUeF) = 2 (‘a’i)"lz"tﬁ[ dy o FY -
¢ ¥ (+e71)

This integral has been evaluated previouslyy see Eqs. (%.25),
(4.27), (4.28), (4.29), (¥.33) and (4.34). The result is

F“(t,l‘) = cut exp (- :E’) - cv g:p(-Bi")

Por 2¢r« O(t™)

U _9 terms O(t™

P (t,r) = Vt[ z-'-'_.-t + %‘ + .:L ’0(1" 2;‘4) ], (4.73)
shere c-(p) " and k=3(&" . [ see Eas. (+.34) and (h.ks)}'
Por r= 0, it follows from Eqe (4.72) that

Pto)= cut - & =cvt.

Ca7tt)
Since the maximum term in the sum
[y .
RiF) = ) € p0
wee (4+.63)

occurs for n= P+ O(vt), there will be negligible error in
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replacing the upper limit of the sum by infinity. Therefore,
RkF) = exp (- P"(t,'ﬁ)) ,
%.75)

which is exactly the approximation used by James.. It then

follows from Egse (4.73) and (4.75) that

f(t,F) = exp {-cvt * "_;!f" - 13_:_:‘} ) .76

Bquation (4.76) is consistent with the results of Section5.
In particular, we note that except for the umimportant
normalization factor exp (,-’f:-,v‘t) y We can write

ety = & “"")./ (7).

8. Jmportance of Cross-Interferences in the
Calculation of F(t RB:T)

An exact relation for F(t,T:T) is

4.77)

t-h (o) i) -,
e EIEFIETO) P pLETD) 2y v o)
Fle#:7) L,‘“. 2o (6.7) PEE T (he22)

We define a "ecross-interference" as an interference between
a chain of z 1inks having extension ¥, and a closed loop
of (t-t) links beginning at the end of the first chain.

(See Fige 6) The term "cross-interference" is used, because

.‘.
'f | S0

o Sy %

Fig. 6
I1lustration of a Cross-Interference
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the interference (of beads k and 1 in Fig. 6) is "across®
the fixed z*" bead. Then p(%,T:t-T,0) is the probability
that there zre no cross-interferences, computed taking aécount
- of volume exclusion within the two chains. In the first
approximation considered in Section l, the p's were replaced
by ones that is, F(t,F:F) was calculated in the absence of
volume exclusion. In the next approximation, we shall
calculate the p's assuming that the probabilities for
non-interference are independent. Therefore, as the next
aporoximation of F(t,T:T), we define
vhere (T, F:t-T,0) is the probability that there are no
cross-interferences, calculated assuming the probabllities
for ncn-interference are independent. We have defined g(t,F¥)
in Eq. (4.62), and its value is given in Eqe (4.67), from
which it follows that

r(sH) o) = exp {'hrr’ t‘t.?t} .

R(e,7) .79)
It follows from Eqse (4e24), (4.78), and (4+.79) that
P, (t,T:T) can be expressed as
_ i
£ie7) =(,%T"#.de-i”'(---)‘ "‘ue{-f‘('*%kv).—.";}e.(r,m«:.e).
- (4.80)

If the effects of cross-interferences are neglected--that is,
if one sets p,(z,r:t-v,0) = l--then F, (t,F:T) as
calculated from Eqe. (4.80) differs negligiblyrfrom F, (t,Fir).
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Thus the essential factor in the improved calculation is the
p‘ro_bability that there are no cross-interferences, p (r,F:t-70).
In Chapter III the first-order approximation was defined
differently; it led to the result [_see Eqe.. (3.37)] ‘

!. lt,?:?) - 'i f’(h‘) i“'j ‘D?) .
j»

Thus the first approximation in Chapter III negleéts

(4.81)

cross-interferences and also neglects interferences within
the closed loope. The result and interpretation given in
Chapter III, Section 5 would not be significantly altered
if interferences within.the closed loop were considered,
by setting

A
B (6?7) - Z: T, 60 Bie-i7). sy

It might appear that the approximation implicit in Eq. (4.82)
would give better results than the first approximation
defined in this chapter, since only interactions of a limited
class are neglected in Eq. (%.82). We have seen, however,
that it is just these cross-interferences that cause
T, (t,T:F) to differ appreciably from F,(t,#:¥). The systematic
neglection of the interactions between the cloged loop and
the remainder of the chain would lead to the same result as
the first-order calculation of this chapter. To improve this
result, 1t is necessary to consider the effect of the
eross-interferences.

We consider now the class of cross-interferences--that

is, those interferences involving both a bead #in the:elosed
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loop of (t-t) links and 2 bead in the remainder of the.chaim.
(See Fig. 6). There are (t-1-t) (x-1). such pairs. We
shall denote these pairs by the single index =, and ¥} will
designate a sum over all such pairs. P, is defined t; be
the probability that there is an interference of pair e«
regardless of any other interferences that may be present.

In the first approximation, with the same degree of validity
as Eq. (4.79), the probability that there are no cross—

interferences is given by

g (&, t-x,0) = exp (— Z p‘) . h.83)
If « corresponds to the interference of beads k, 1 (see Fig.§)
then B, 1s given by
s PR8I L9 0L
®

B-vl|as E
B (2, ) §,(¢-7,0)

(4+o84)
From the definition of F,, it follows that

Z_ P vjds‘ f(z,#:7-3)F (T, 0:3).

o
It is shown in Appendix E that for Ri’l, s»1, with the
neglection of terms of the orders of magnitude of t™,

IR -3
2 and g ]

R, B3 = (e d) exe [% (Es=m, .86

[A more complete expression, valid for-small R and 8 is given
by Eq. (E.16).]

(4.85)
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It follows from Eq.. (4+.86) that
©pa
Rlied) & e (E5)
(%.87)
This approximation can be checked by considering the exact
relation

. s ]
I at flieE) aaf.:; ENLDET D)
%% E AT D) "

Integration of the approximation given by Eg. (4.87) gives

e
-6s?) _ -ee*y ¢
fat o) o ()i
in excellent agreement with Eq. (4+.88).
From Eqs. (4.85), (4.86), and (4.87) it follows that

ZP 2 '\rJ-Js I-;;-exp( )ng s EIP[ (&3- “S)] .50)

vhere jst-T. It should of course be remembered that Rs$-3,
and that the integration in Eq. (%.90) is over all § for
fixed.T. The use of Eq. (4.90) without further approximation
is 1mpr_acticable; therefore an appropriate approximation
vill be sought for pf%,T:t-r,0) for use in Eq. (4.80). Such
an gpproximation will be discussed in the next section.
Additional jJustification for this approximation will be

given in Appendix F, where the integrzl in Eg.(4.90) will

be discussed further..

9. Probgbility for No ross-In;errerenceg when Chain
Extension is Not Fixed

Conslder a chain of t links with umspecified extensiom,
but such that the last (t-?) links form a closed loop.
Let p(t:t-t,0) be the probability that there are no
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&
-interferences between the first ¥ links and the close& loop
(cross-interferences) in those configurations in which there
are no interferences within the two parts of the chain.
Let p(x:t-7,0) be the corresponding probability calculated
.nssnmihg that the probabllities for non-interference are
independent.
Inzlogous to Eqs. (4.83) and (4.85) we now have
s
g(=: t-T,0) » exr( ‘Z P ), : (ra91)
where
z R o-v Id's' F(ri3) R(er,0:3),
T . ; (+.92)
The probability demsity, F, (7:3), in the absence of volume
exclusion, in a chain of T links, that a bead be at S when
one end of the chain is held fixed at the origin, is given
by ‘ i
Red): [ il
A (+.93)
Equgtion (%.93) can be rewritten

f(r:3) fd? @7 :3) 37T,

(4.9%)
so that
z P'= v Sd'v'- 8.7 7Y| a2 RixFd)Rter,0:3)

—_— T
) Z-P" 3 (4.95)
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that is, the sum over all cross-interferences when the
extension is not constrained is the r-average (w:.th weight
equsl to the weight of the configuration, &r(t,?)) of
the corresponding sum for fixed extension. Thus pf=z:t-x,0)
is analogous to our previously defined p(r,Fit-%,0);
the natural logarithm of the former probé‘bility 1s the average
over all r (with weight §r\(_'=, '1")) of the natural
logerithm of the latter. ‘

In the remainder of this work, pg(=,T:t-v,@) will be
approximated by gR(= :t-%,0). Since it is more likely that
there are no interferences between the two parts of the chain
(the closed loop and the remainder) for configurations having
large extension, we shall be using a value of g that is too
large for small extensions, and too small for large extensions.
Thus the effect of this approximation is to overweight small
extensions in the calculations of F, (t,TsT) and hence to
under-weight small extensions in the calculation of $(t,T).
Since the effect of the first-order calculation is to increzse
the weight given to large extensions, the effect of the
approximztion discussed here 1s to under-correct the first
order result. We shall discuss this point further after
first calculating p (®:t-%,9).

It follows from Eqs. (4.17), (4.87) and & simple integra-
tion that

[ RGemE @S =4 e

(+.96)
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It then follows from Eqs. (%.92), (¥.93), and (4.96) that
. _

- .
Zg"ﬁ aj (2)* L * g

= 4i11 (%)%Efd“"(z'!‘?—.'; ) -arctan (RE )].
- (4e97)

S8ince we are interested primarily in the case of large t,
both {»1 and T»I are true over most of the range of inte-
gration in the expression for F, (t,T:T)e [See Eq. ('+.80).]
Therefore, neglecting terms of order §'we have

ZE = aj® (&Y% ecchon E(;?')k] o

(%.98)
As before, let .
S (4.23)
and
A= (é%, .hvt"‘ .
(%+.38)
It then follows from Eq. (4.91) that
piti: ja0) = exp {“‘? an’t arc tun E (l;!)"‘]}
) (4.99)
‘Cansider the function .
HGY = 3% acc e 3 ()% ] (+.200)

vwhich is plotted in Fig. 7. For small x, H{x) increases
lixe Fx® | For small (1-x), H(x) ¥ 2(2-x)%. We shall
cansider the epproximstion

Ho(x) = Fuk (o)
4.101)
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vhich is also plotted in Fig. 7, and is seen to have the
essentlal features of H(x). Hy(x) has been chosen so that
the approximation is best for smzll x, beczuse-the integrand
in Eq. (%.80) is largest for small x--that is, for a relatively
small number of limks in the closed loop. With the use of
thls approximation,

R i) ¥ enp [aAKRG ] 202
It therefore follows from Eqe (%.80), with the replacement
of p(t-i,Fsio0) by g(t-i:i,o) and the neglection of % ¥v
with respect to 1, that

TR e e Peap ([ )emp ANV,
% (+.103)

gain let
Hesin e G 2, 8=ty oL,

V=X m J'z? (‘*027)
Equaticn (4.103) can then be rewritten

e | :
D eay s .3h 3 3y o
I P R
10, Fu(t,Xsk) = Expension in Powers of A

Bquation (4.10%) can be written

Ys ' 3 ® (awa)” L
et )~ 3 [ 2 cotcgy) Pt QoD ool

.105)

'k a=3 -“ u
Let 2 L 3
o = dy 2
B (g ) g, * q' “,--l e 3

(4.106)
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Rt ) - (L Y er e g (p),
n
. e (%.107)
It follows from Eq. (u.ze) that '

Rf:F) = (2 ) Za .

(%.108)
From Eq. (h.106), it follows that
8() = -‘3. Fi. -!-J.’/‘s‘i et
. [z ol ’
_ (k.109)

For r>1 ("/3' ’3”'),- the upper limit of integration can be
replaced by infinity to obtain

BAf) ¥ -+ E(-§T).

%4.110)
Erhe exponential integral -Ei(~u) is defined as
b
: -8
- E(-u) = S““" b
(4.111)
For u>0, -fi(-«) is given by the convergent series
3
-Ei(-w) = -0.8772- -lnw 00.-3? +;;. .
(4.112)

However, for large values of u, the asymptotic expansion
= e o 2! 3!
-E’x(‘“"%‘[“;"’ F"F""]

is userul.]
For n 32, the limits of integration in Eq. (4.106)
can be replaced by o ande to obtain

(+.113)

—-—y



€Y = f‘rd Y™z o LS D)
B.,(f) e N Y m., e ’

t.11k)
from which it follows that
=) B2 e - s
i e’B.('E)]- ”..-. sr(z),
a§™ § ,
(+.115)

for n¥ 2. Specifically, it follows from Ege (4.115). that

"
1y = we® erfc §

() -¢[ e e’ 8]
Combining the above results, we have

RFF) = (X ”‘_‘% { [ty + zf'--ﬁf] @A E - F37)
+. N oF ente §

B %—“h e f'eps.‘.('f')] o }

and

- (4.117)

(+.118)
vhere the A independent terms are Fo(t,B:T). E'See' Eq. (1l-.35)'.]
In order to compare the vér:l.ous terms in the above expansion,
consider Table 2, in which the § dependent terms in Eq.
(4.118) are computed for f#A= 1. The first-order term in A
makes F, relatively larger for large§ and therefore decreases
the weight given to configurations with large r in the
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Jd=o0%5 _fe1.0 fe1.5 f=2.0

&(Gr-1) 0.886  -0.886  -2.07  -3.10
GCRS) for dhi? <772 -6.33  -5.52 ~£.94
weleric § 1.95 . 1.34 1.01 0.803
.',{»h" E:¢ ;‘)} -0.443  -0.269  -0,175  -0,116

Comparison of Ternms uI:b ti: gxpa;nuion of F, (t,2:7)
caloulation of $(t,F). For A suffiefently small 2o that
higher-order terms san b® neglected, the correatiom due to
the first-ordor term will not be important, sinse in the
renge of interest E1(§{* &) varies more slowly with §
then do the §-dependent terms in F, (t,T:T). The A'-tern
varies more rapidly with § than does the A- t\%m, besozing
proportional to 1/§ for large § . It is seen from Tablo 2
snd Eq. (4.118) that this term makes F, relatively smzller
for large § and thorefore increases the woight given to
eonfigurations with large # in the caloulation of 3,(t,¥).
The third-order term exhibits the same behzvior as the first-
order term, slthough it shows a stronger § depéndence. For
N ? 0(1), many terus in the expansien Eq. (4.118) czre
iwmportant and eonscquently the expansionr 15 not a useful
spprotch. Wa shall shorofors return to the consideration
of the imtegral given in Eq. (4.104).

11, B (8F:7) for Large A
P, (8,7:F) 1s given by the integral
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RFd) 13.-!'2%,; S::"S "E?'"P('f“l‘)e“l’ {'z‘ﬁh T.‘T‘T }

(4.10%)
It is clear thst the A dependent factor in the integrand
becomes important for largeA. This factor is pIotted in
Pig. 8 for 2/\= 0.1, 1, 10, and, in the same figure, €9
is plotted for §20.5, 1, 1.5. It is clear from Fig. 8 that
for §>1 and A 1, 211 but a negligible contribution to the
Integral comes.from.very:small, ¥» The physical significance
of this result is clear. Since y-éq, where { 1s the number
of links in the closed loopy the above result means that
the probabllity for non-interference between the closed
loop and the remainder of the chain is mégligibly small except
for small loops. The consequences of this assumption will
now be indicated. Since the results are of very limited
interest, we shall only ocutline the calculation, omltting
all details. :
For AM1 and §>1, Eq. (4.104) can be further
approximated by

-
s = 22 [ 4 St orlry)ortareay),

%

.119)
It follows exactly from Eqe. (4.119) that
o 32 -8 2vEa
FR,TT) S (%) % {-‘;—:Q
1 "'_ll £ S  E2.Y
*.‘g_(‘ 2‘)“?( 'x er c(g i )
_ (4+.120

-G ‘“¢r’
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(%+.120)
Using the approximation
ol
erfc w ® e
1w JEW (h.121)

and sultable neglections, we obtain the result

L-L
Fod | av (wiE 2 0EE)

Fll‘\*“)! .c + 1 Nt
ar

.122)
An approximate solution of the partial differential equation

i.ltﬁ‘) = exp{ Tolut)w? ¢+ T(utlw + Twt)

+ Rt lnw + T(wt)-L «.. }
) w (+.123)

where wWe T+ 3g_t .

(o124)
The detalled result of this calculation indicates that
8, (t,}) 1s essentially the seme as J.(t,F) except that the
dispersion of the distribution is increased slightly by a
factor independent of t.

. The reason vhy we do not give the details of the
ecalculation here 1s that the result can be predicted without
any calculation. It has already been noted that the
approximation implicit in Eq. (4.119) is to consider only
the effects of small locps. In doing s0, we zre effectively
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treating volume exclusion as a short range correlation, and,
as was pointed out in Chapter II, such treatments will
glways lead .to a Gaussian distribution of exte:nsions with
dispersion proportional to t. It is true that small loops
are much more probable than large loops; however, the
number of configurations without any interferences decreases
exponentially with t, and a small error in the number of
excluded configurations will mean a large relative error
in the number of allowed configurations. For this reascn
it 1s necessary to obtain a more accurate evaluation 61‘
F(t,Tst) if one 1s to obtain any conclusion concerning
§, (,3) for vth¥» 0(L).

The approximation to F, (t,T:T) that is given in
Eqe (4.122) was obtained under the assumption that §>1
and AM»1. However, the solution of the partial differential
equation effectively involves an integration overf§ and A
from zero to the values of interest. Crude approximations
that are in serious error for small Mand { can not be expected
to yleld values of §,(t,T) that are valid for large values
ofAand § . The writer has not been successful in obtaining
& more accurzte evaluation of F,(t,T:F) as given by the
integral in Eq. (4.106). It appears quite difficult to
obtain a single apcvroximation valld over the entire range
of interest. The only practical procedure apparent to the
writer is a numerical evaluation of F, (t,T:r) followed by
& numerical solution of the partial differential equation.
The value of such a calculation is questionable, as will
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be pointed cut in the next section, and the calculation will
not be included in this worke

12, Summary of the Approximations

The basic integro-difference equatién of the theory
was replaced by a boundary value problem by mesns of a
sultable lﬁmiting process. The phy;:lcal significance of
this procedure was discussed, and the parametérr v was
interpreted in terms of the physical properties of actuzl
chain molecules.

The James solution of Eqe. (%.15) for FsFy was shown
to be formally valld even for vt >0(1), but it is to be
expected that the replacement of F by F, leads to an over~
correction for large t.

A general integral expression [Eq. (h.ah)] was set
up for calculating F. The integrand contained the
probabilities for non-interference p(t,?), p(x,F:t-r,0);
and the next approximation F, was obtalned by considering
sultable approximations of the pse A general procedure was
formulated for calculating p(t,T), and it was shown thzt
?.(t,¥) corresponds to the assumption that the probabilities
for non-interference are independent. [-The writer has not
been successful in obtalning an approximation better than
P (t,T) from the general formula given by Eq. Gr.61).]

It was shown that the major factor causing F(t,T:¥)
to differ from F,(t,T:F) is p(x,Tst-%,0), the probability

that there are no cross-interferences. Two major =
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assumptions were made in calculating this probability:
(1) interactions within the two parts of the chain are not

considered, and

(11) the r-dependence is effectively averaged out.
We have already discussed the effect of the second assumption
and have concluded that it will tend to under-correct the
result of the first order calculation, giving too much
welght to configurations with large r. The results of the
previous section seem to indicate that the second-order
calculation gives an over-correction of the first-order
result, essentlially removing the first-order perturbation.
This over-~-correction is partially due to the approximations
made in going from Eq. (4.10%) to Eq. (4.122) and partially
due to the assumption (1) above. | By calculating plx,Fit-t0)
without taking account of volume exclusion within the two
parts of the chain, too small a value is obtained for
highly coiled configurations. Therefore $.(t,F) will be

too large for small. r.}
In the case of A*0(1) there 1s no reason to assume

that a second-order calculation using the assumption (i)
gives better results than the first-order calculation., If
the result of this second-order calculation éppreciabiy
differs from that of the first order, then it wouid be
necessary to calculate p(¥,F: t-50 ) taking account of
interactions within the two parts of the chain., This
necessitates knowledge of the distribution of an interior



bead teking account of volume exclusion, a problem we have
heretofore not considered and one that raises many new
difficulties. [See Appendix D for a discussion of how the
theory can be modified to determine the distribution of an
interior bead.]

In the conclusion and summary at the close of this
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thesis,we shall discuss further the fezsibility of extending

the perturbation calculation. We shall consider first,

however, another aspect of the problem. If one is interested

primarily in the moments of the distribution, these can be
calculated directly from the partial differential equation
tEq.- (11-.15)] s the mathematies involved being somewhat
simpler than the problem of evaluating F(t,T:T) and
solving the boundary value problem. The direet evaluation
of 1) will be considered in the next chapter.



CHAPTER V
DIRECT EVALUATION OF {r2)

l. GCeneral] Theory:

-Most authors when considering the volume exclusion
effect endeavor to calculate {r*) directly from their.
formalism without explicitly determining the distribution
of extensions. @.(t,}). We shall now show how this
procedure can be applied to the boundary value problem
discussed in the previous chapter:

Wlt) _ 1 5, 1e8) = - BT,

w ¢ | (5.1)

Each term in Eq. (5.1) will be integrated over all
space. The integral of §(t,F) over all space, 'IJ? ., 1),
is the fraction of configurations of a chain of t links in
which there are no interferences involving pairs of interior
beads, since interferences of the fixed end beads are not
considered.. Configurations that satisfy this condition will
be called "allowable.™ The integral of v ,(t,F:T) over all
space, v [df- $ (t,T:F), is the fraction of configurations
that are both allowable end contain an interference at the
end t.

Both %(t,T) and §(%,T+F) are spherically symmetric.
For very large r (of the order of t), the effect of volume
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exclusion is negiigible, and consequently &(t,T) must
eventually decrease like

B = () ere 2 8).
€5.2)

It therefore follows that

r" a——_—i'u“.) - 0 as T = o0

ar® (5.3)
for all non-negative integers myn. It follows from Eq.
(5.3) and the spherical symmetry of ¥(t,T) that

jld'l= L5 = Wj.dr 53; r ;rf') = a. _ s

If the order of integration over T and differentiation with

‘respect to t can be interchanged, 1t follows that

& [ {d# mﬁ)] = -v[@ et |
(5.5
that is, the rate of change with respect to t of the fraction
of allowable configurations is given by the fraction of
configurations that are both allowable and contain an inter-
ference involving the £ bead.
Multiply Eq. (5.1) by r* and then integrate over all
space. Successive integrations by parts and the use of
Bq. (5.3) gives
[a# roded) = ofar B9,

(5.6)

Upon interchange of the order of integration and -
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differentiation, it follows from Egs. .(5.1) and (5.6) that
%[I‘;‘ r i(t':)] - |dF ;.(ts?) s v S.d-le r2 f.(t,? 17‘).
The mean square extension (r’)' is defined as
I df 9 §,(¢,7) '

Jer B | (5.8)
It follows from Egs. (5.7) and (5.8) that

2 & rdEyT)
L4y, + <) Aald? B @eF)-) = -V I : .
&2 e [ [«F B.¢,7)

(5.7)

)y s

(5.9)

Define -t =
vfdi'.fti (e,r 7Y

vfd? ;.(t,?“:'r') )

{r} =
: (5.10)
Thus {r }t is the mean square extension of those allowable
configurations in which there is an interference involving
the t™ bead. It follows from Eqs. (5.10) and (5.5) that

-v[dt g, (i,?ﬁ) L [ df F,(&7).
[ 2.7) - G

Lot

kivs 5 In Id'f‘ F,(4,7).
(5.12)
It then follows from Eqs. (5.9), (5.11) and (5.12) that

TN CIRR O

In the absénce-or volume exclusion

g‘.ﬁ FO(4F) =0

(5:13)

(5.14)
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and therefore K(t)= 0. Equation (5.13) then leads to the
well known result that 1n the absence of volun;e exclusion
{r*),= t. Vhen volume exclusion is considered, the fraction
of allowable configurations decreases with t§ therefore
K(t)< O for all t. If {r'}, were equal to {r*), then volume
exclusion would have no effect upon the second moment, since
the conflgurations excluded would have the same moment as
those containing no interferences. However, it is clear that
such 1is not the case. The mean square extez.:sion of those
allowable configurations in which there 1s an interference
involving the t" bead will be less than the mean square
extension of all-allowable configurations; that is,

{r*}, ¢« (), for all t. Therefore £ <r*) >1 and
{r*¥, is larger than the value computed in the absence of
volume exclusion.

Equation (5.13) and the discussion given in the
preceding paragraph é_re completely general. In order to
‘d1scuss the behavior of {r*), in a2 more quantitative way,
it 1s necessary to calculate K(t) and {r*},, vhich in
turn necessitates making certain assumptions. We shall
consider the calculation msking assumptions corresponding
to the first-and second-order caleulations considered in the
preceding chapter, and shall ¢ompare our results with those

of other authors.

2. Approximate Calculation of K(t) = £ fgf g.(t 1)

In the absence of volume exclusion
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. ¢t
B F) = di 87 G BT,

(5.15)

so that

- n 2 t.?' t"ll)
j’d? §‘(ﬂ (¢,F:F) = (-;Ejl J:h _;!ih = C+ O( )

(5.16)

vhere

3,
- ™

Since $.(t,¥) is normalized, Eq. (5.16) can be rewritten
as

vl 8OWFH) L o(utw).

[ a7 3 (e) (5.18)
Equation (5.18) shows that in the absence of volume exclusiom,
the fraction of configurations in which the t** bead is

involved in an interference becomes constant for large t.
(m; is analogous to the recurrence theorem in random flights,
quoted in Section 1 of Chapter II. See reference (10).) -
On the basls of the statistlcal results of Wall, Hiller and
wheeler (53), and the firsteorder calculation of James (24),
it is reason_abie to assume even in the case of volume exclusion
that the fraction of allowable configurations in which the
t" bead is involved in an interference becomes comstant in
the 1imit of large t. It then follows from Egs.. (5.5) and
(5.12) that

I df § (t.T) T exp (-C\i't) (5.19)
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10k

and
Kt) ¥ -cw
(5.20)
Equation (5.13) then becomes
‘% <|-">t = eV [(r‘)t - {r‘}t] '. ‘
(5.21)

The approximation embodied in Eqe.. (5.20), the negleet of
terms that are O(vt™), will be discussed later. We shall
first consider the solution of Eq. (5.21) by successive
approximations of {r*{,

3. General Expression for {r'}s
It follows from Section 3 of Chapter IV that
> L=k N i ontei -
BtF )= | 4 B0 B -i,F)p(isertisT) .
L (5.22)

[See Eg..- (4.22).] The probability that there are no
interferences between the closed loop of j links and the
remainder of the chain, p(j o:t-j,¥ ), vill again be
approximated by p( §,0:t-§ ). This approximation has been
discussed in the preceding chapter.

Using Egs. (5.8), (5.10), and (5.22) we then write

[T nadetieeid e, [ aeh

{r]“ th S .
dy B (§,0) plj0:ty) Sd? §.-i7)
h-'h : (5-23)
= dr Qylt) ), t-h
Iv. T / {, dx Gy,

G.24)
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vhere . .
Qe lt) = B, (t-x0) plt-zi0 1) Idf E.(z,F). (5.25)
The significance of Q.(t) follows simply from Eq. (5.25);
it is the total weight of allowable configurations of t
links in which there is an interference between the ™ and
t"beads. Thus Eq. (5.24) expresses {r‘L as the welghted
sum over T of {r*), , weighted according to the relative
veights of configurations containing a closed loop of (t-T)
links. “

We shall assume that
ey

RS Pl

which is consistent with the results of the first-order

(5.26)

¢éalcnlation of the preceding chapter [see Eq. (4.37)) and
is consistent with Eq. (5.19). It follows from Eqs. (5.19),

: I'h olj “‘ <f >t.1 P("o t -‘)
{ri}g 2 t-'/c
. ‘j —L P (3|° t-")
h C gV (5.27)
The atove approximate expression for ‘{r’}t should be

adequate for the first~order calculation in which p(jet-3)

:ls replaced by one, and for the second-order calculation in
shich pGpt-y) is replaced by p,(j.:t). (See Chapter v
Section 9),.

4.. First-order Calculation
In the first-order calculation, p(§,o:t-y ) is set



106
.qual to one in Eq. (5.27)’ to Obtain

P
rle di »
{ }: wT -k j:l: ‘ ﬁ, <P

(5.28)
It follows from Eq. (5.21) that
et/a
L), = l+cv[ L | .
prry t R di L),
PR, WY E | (529
let p
A= L, (530
It follows from an integration by parts that
"78
j ?h Sy~ iz {r), - 2_“ “_! A(t-n + O .-
(5.31)
From Eq. (5.29) and (5.31) it follows that
AR) = 1+ ev [(r’)ﬁ - (1-3)t { t+\,—'§--- . }
¢
'I— o™ s v e
+é{l+ = } J(t' S (T)]
£ 1 k[-ﬂ AR - %<2 | oW,
1
(5.32)
K = &V %
* - @) (5.33)

st-% will be replaced by t in those places in the
caleulation vhere the replacement gives rise to negligible
error, as in the second term in the denominator of the right

hand side of Eq. (5.28).
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Since t
(') I dr AlY),
¢ (5.34)
it follows from Eq. (5.32) that
t
Ak ~ 1+ x Id‘: [(-'-:)”'- ;L,‘l] Alz).
’ | (5.35)

vhich is a Volterra integral equation of the second kind.

The solution of this equation can be written as

A~ ] " AW,
e (5.36)

convergent for 211 x, (33),

where

A @) = f dx [;_ﬂ,‘— &A@ o
and

Aed = 1. (5.38)
It follows immediately from Eqs. (5.37) and (5.38) that

Alr) = th (539
Aft) vill be obtained by ind\;.ction. Assume

A ) » @, t T (5.40)

It follows from Eq. (5.37) by comparatively straightforward
Integration that .
A ) = a. t™?
(5.41)
vhere Qa * Qe Lo r(nu) -2 ]

{"(%")} il (5.42)
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Since Egqs. (5.10) and (5.41) are satisfied for n=1, they
follow by induction for all n$1l. :
It follows from Egqs. (5.30), (5.36) and (5.41) that
), = i x" a, t¥

mo T+! ' (5.43)
Sinc " 32 . 2
T w2 (TR e, (5.44)
Eq. (5.43) can be rewritten
XN N an ()"
1 * % ¢! (ﬁ )\) .
n=o (5.45)
Por A«&l, it follows from Eq.. (5.4:5) that
32
. e A L 4 (Y5t
&), /t i Y= * 3(25) vt (5.46)

This is exactly the James'! result for small A, rsee Eq. (11-.1}8)]
and is essentially the result obtained by Bueche (2),
Grimley (18, 19), Rubin (38), Saito(%l), and Teramoto (48),
whose works were discussed in Chapter II. As is pointed out
by James, and as is evident from the discussion in
Chapters II, IV, and the present chapter, Eq. (5.46) is
valld only for small A. It certainly ecan not be used to
conclude that {r*) increases as t™ for large A.

Equation (5.4+5) essentially gives the result of the
first-order calculation as a series, 'successive partial
sums of which cen be interpreted as$ succescsive api:rox!.matians
to the first-order result. Thus the term for n =@ corresponds
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to the result in the absence of volume exclusion. The terms
for n= 0 and n=]1 correspond to the result one would
obtain by replacing {r*)> on the right hand side of Eq.(5.299
by its value in the absence of volume exclusion. (This
is essentially what was done in references 2, 18, 19, 38,
41, and 48 mentioned above.] Successive approximations
give the higher-order terms. By comsidering a sufficient
number of terms, we ean use Eq. (5.4+5) to calculate £r*d/t
for A*0(1Y. This has been done, and {r*>/t is given as
a function of A in Fig. 9. The same figure gives also
£r*D/t as a function of \, as determined from the James!
result. [See the first-order calculation in Chapter IV,

EBq. (’+.1|v7).] We have seen that this latter result predicts
too great an increase in <r*) with t. Since the result
calculated from Eq. (5.45) increases even more rapidly,
this result misbehaves rather seriously for a%0(1l).

It is not easy to evaluate the effects of the
approximations made in obtaining Eq. (5.45). Small errors
made in approximating {’_r‘}t can cause a significant error
in the small difference <r*d,- {r‘}. appearing in
Eq. (5.12)s For example, if %‘ were neglected in
comparison to 22 in Eq. (5.29), then even a, would not
agree with the corresponding coefficient in the .James'l
result. The vélidity of Eqe (5.45) 1s restricted by
approximations, which, although appearing reasonable,

have disastrous effects upon the aa..



110

40

30+

L2
T

First-Order Results for the
Mean Square Chain Extension

Fig. 9

From Eq. (5.45)

| L

k

James' Result
(First-order result

of Chapter IV, Eq.

(4.47)

1 | 2

LO

0.5

1.0 'Iz
20 a E(%]Vf'la

15

20



111
The writer does not feel that the direct evaluation
of {r'), from the partial differential equation is a useful
procedure unless the effects of the various apprdx:lmations
can be more accurately evaluated. Rather than dismiss
this method at this point, however, we shall brieflﬁ discuss
the formalism of a second order calculation.

5- Eecond~Order Calculation
We define the second-order result as the solutiom of
Ege (5.21) when {r*}  is determined by Eq. (5.27) with
¢.(i,e: %3 ) replaced by

o Ciore) = e {(E)VER ),

L-See Eqe (h.loz_).] Again one cen proceed by a method of
successive approximations, but we shall here consider
only a first approximation, corresponding to the first
correction term in Eq. (5.45). The calculation will be
outlined with most details omitted.

The first approximation consists of replacing (r"z on
the right hand side of Eqe (5.21) by its value in the absence
of volume exclusion. With this approximstion and the use
of Egs. (5.27) and (5.47), it can be shown that

<“')t - {,.zh

w

att ‘L_:!x exp ['Zﬁl l(|-x‘)"l} ,
2dz

(5.48)
with the neglection of terms of order v and £ ® . Let

I(v) = j:dx exp {-bx(l-x')'/‘} . (5-‘*9.)
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I(b) has been evaluated numerically using Simpson's rule,
and is given in Table 3.

b 1(b)
0 1.00
0.1 o7
&5 0 73
2.5 0.47
) @26
10.0 0.13
20.0 0.07
Table 3 p—

Results of the Numerical Integration I(b)= [d;

It follows from Eq. (5.21) that the first approximstion
in second=order calculation 1is given by

a e 'I.
4<ryE 10 S2UIem) = 1e ATem),

(5.50)
from which it follows that
‘> - {®A
ez ue 2= | b6 T0)e
L 3 °
.51)

(The first-order calculation corresponds to I(b)=1, in

which case'Eq. (5.46) 1s an immediate consequence of Eq.(5‘.51).)
It follows from Eg. (5.49) that I(b) behaves like

1/b for large b. Therefore it follows from Eq. (5.51) that
/%t appiroaches a constant value for large A« Values

of {r3 /t evaluated numerically using Eq. (5.51) are

given 1n Fig. 10, vhere, for compariscn, the result of the

first approximation in the first-order caloulation [Eq. (5.46))

is also given as a function of A.
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i It 1s seen that the first correction in the second-order
eelculation increases much less rapidly than the corresponding
term in the firste-order calculatlon. However, with only

these single correction terms, no meaningful prediction

can be made concerning the behavior of {r*) /t for large .

The writer does not consider it worth while to continue
the second-order calculation to obtain corrections corres-
ponding to the higher~order terms in Eqe (5.45). In the
present calculation, we found it necessary to know £.(t.0)
and [a &,(t,3), for vhich we used results obtained in
Chapter IV. Unless these quantities can be obtained more
accurately than $(t,F) has been thus far, or without the
pecessity of first explicitly obtaining J(t,T), the method
of the direct evaluation of (') offers no advantages.

This chapter has been included for completeness; to
again point out the inzdequacles of the widely obtained
result that <) increases as t”*; and to show how
the results are eritically dependent upon the
approximations made.
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SUMMARY AND CONCLUSIONS

-This thesls has considered the volume exclusion effect
in flexible long chain molecules in terms of a pearl
necklace model with rigid sphere interactions. The basic
equation of the theory was obtained in Chapter III by
essentially considering how the chain can be extended, and
a system of integro-difference equations for J(t,T),
$, 71, §‘(t,?:§."ﬁ.)', and so on, were derived. The
first of these equa.tions, Eq. (3.14), corresponds to an
equation considered by many authors, but avolds a serious
normalization error rrequeptly made, which was discussed in
detaf® in Chapter II.. Equations (3.14), (3.15), (3.16),
and higher-order eguations that can easily be calculated
from the formalism presented, provide in principle &
systematic procedure for the determination of &(t,T).
A method of successive spproximations has been proposed
in Chapter III. The first-order calculation is shown to
correctly exclude all configurations in which there is
at least one interference (say between beads 1 and J) such
that there are no interferences between beads on opposite
sides of either 1 or ], or between beads both of which are
within the c¢losed loop formed by 1 and J. It was emphasized
that although the relative number of configurations that
are incorrectly welghted is small, this mst be compared
vith the relative number of allowable conflgurations, which
decreases exponentially with t. The result of the first-
order calculation is not in convenient form for calculating
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<r‘> for large t, and this calculation is consequently not
eonsidered in Chapter III.,. A second-order calculation was
considered, but was not successfully carried out.

In Chapter IV* o limiting procedure is considered, in
which the integro-difference equation for §(t,T) 1is replaced
by a boundary value problem, in which the unknowrn function
F(t,T:F) also appears. Successive order approximations to
$,(t,T) are defined by specifying successive approximations
of F(t,?.*'z!h The first-order calculation of James, leading
to a displacement of the Gaussian distribution, has been
considered in detail.  As we shall presently show, the
agrecment with experiment is good for those values of ¢
for which the first-order theory is valid**and thet are
within the range of experimental results. The experimental
results quoted in Chapter I, and the results of the Monte
Carlo calculations quoted in Chapter II, indicate that
{r*)~t"t. In the solid curve in Fig. 11, {r*), as
calculated from the result of the first-order theory
tEq. (ll-.h-?)], is given as a function of t on a log-log plot.
Values are calculated assuming vs=0.1, which is consistent
with the estimation made in Chapter IV, Section 1. As

*fn extensive summary and discussion of the approxi-
mations made in Chapter IV is given in the last section of
that chapter. . -

#+The limit of validity of the first-order theory is
determined by the value of t for which the second-order
correction becomes important. The first-order result was
shown here to be formally valid even for values of rs0(tW%), .
and is not formally restricted to values of r4¢ 0(t”/a), which
James conslders.
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shown by Fig. 11, over the range t = 40 to 400 (A¥ 0.4 t0,1.2)
the calculated value of {r®)> is closely approximated by
the dashed straight line, the slope of which is 1.25.
1:_he deviation from the stralght 1ine for small values of t
1s understandable, since for small t, one expects {r')~t.
The experimental results quoted in Chapter I do not extend
to such small values of t; the data given in Table 1
corresponds to values of t extending from approximately
50 to 10,000.

There is, however, a definite discrepancy between theory
and experiment for large values of t: the first-order
calculated value of {r?) increzses too rapidly with t--
that 1s, the first-order perturbation caleulation gives too
large a correction for large t. k

4 second-order calculation was also considered in
Chapters IV and V. It was shoun that the second~order
correction.is in the opposite direction to the first-order
correction, and 1s quite significant for A>l. Nathematical
difficulties prevented the writer from completing a
successful second~order calculation. The results are
extremely sensitive to the approximations made. Depending
on the nature of these approximations, the second-order
calculation can give values of §,(t,T) essentially
ddentical to either the result in the absence of volume
exclusion or the firsteorder result. The procedure hzs
been developed in such detail in Chapters IV and V that
a-formally velid second-order ezlculation for A= 0(1)
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appears feasible by numericzl methods. This computation
wes not carried out here.

The perturbation calculation that has been described
is of limited applicability in treating the volume
exclusion problem because the perturbation is so large.

We are effectively calculating the number of allowzble
configurations of glven extension by subtracting from the
total number those configurations containing interferences.
Since the number of allowed configurations decreases
exponentially with t, any small error in the number of
excluded configurations will cause a large error in the
calculated value of the number of allowed configurations.
while higher-order perturbation calculations can extend the
range of validity of the results to slightly larger values
of A, such ecalculations become successively more difficult
and hypersensitive to -the approximations made.

In conclusion, an exact formulation of the excluded
volume problem has been given, but the methods of solution
apparent to the writer give interesting resulis for only
& limited range of t values.. Agreement with experiment is
good within this range. The mathematically interesting
question-~ what 1s the limiting form of {¥*) /t as t>eo —
can not be answered on the basis of the formalism ﬁresented
here, and remains, so far as the writer knows,an

unsolved problem.
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APPENDICES
A. The Molecular Dimension Determined by Light Scattering

The use of Egs. (1.3) and (1.5) to determine {r®) from
light scattering measurements actually assumes that the

distribution of segment m about segment n is Gaussian with
dispersion proporticnal to m-n. We shall show here’that
the ex_perimental procedure actually gives the mean square
distance from the elementary scatterersto the center of
mass, regardless of the distribution.

One can write Eq. (1.1) as

o) 22 fas.,,. fmaitr) T X

=X Von .1)
where ¢=2 sin %,‘9 being the scattering angle, and f£(m,n:f..)
gives the probability density that the vector Joining segments
mand n is ... The wave length of the light (in the
solvent), N , 1s several times greater thar the mean dimen=-
sions of the longest molecules considered. In addition,
one is interested in the slope of a plot in the neighborhood
of #=0. Ior these reasons one can expand the sin x/x term

in Eq. (A.l) to obtain

P(a)=2§: ['-—“w)<r...>+---] s

m> > n
If the vector drawn from segment m to the center of mass

is denoted by %,, then

Y dare, (1.3
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= .}Z (5m 450 - 2%m-3.)
h

=ty sl o= (A.k)
vhere s* is the mea:r .équare distance from the segments to the
center of mass, for a given configuration. Averaging over
all configurations, we obtain

PARGHEEIR O w5

my n :

If we let P(0)= 1, then from Eqs. (A.2) and (A.5) it. follows

that 2q2 K
P(e)- ‘= -g— s f <s‘) +,(\|qher powess of Sh)_

JX (4.6)

Equation (1.3) 1s consistent with Eq. (4.6) only if

&) = o), (4.7)
Equation (A.7). is not general, however, but is a specific
result of the Gaussian distribution. (See, for example,
Flory (11), pp. 428-%430.) Consequently, experimenfally
1t 1s {s®) that is determined, and the form of the
distribution of segments must be known or assumed before
{ ™) can be calculated.

B.. Note.on Ternary and Higher-Order Interferenceg

The formalism developed in Chapter III, Section 2
excludes a configuration upon the addition of the (1;+l)'f
bead if there is an interference involving the t™ bead,
and there are no interferences between any pair of beads.
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i, Jin which 1< ty §<t. However, the approximation made
in going from Egs. (3.9) and (3.12) to Eqe. (3.13) causes
to be excluded twice configurations in which both the
:l.“' and J“‘ beads interfere with the t™ bead, without
interfering with each other. In thls appendix we shall
show how the theory can be modified to take account of such
ternary and highereorder interferences.

It follows exactly frpin Egse (3.9) and (3.12) that

: . - . ‘.I . ‘ )

NI CRSENS BRWACRNE PICSES! 15 YRS D TR
. ] ¢ § ."(Bol) }

Using the same procedure as in the derivations of Egqs. (3.1k),

(3.15), and (3.16), we obtain
X CIR SR PLPILEDE YL
"’S*"%U ?)[Z AN D

- Z z [g:.. ? (t,f'g RESRATIGE D)

i€y

. ]
(8.2)

Since @,(t,T'z 1,T; j,#; ) varies strongly in the neighborhood
of F; = ¥, & (F-F;) can not be replaced by v8(¥- ) in the
tern involving the double sum in Eg.(B.2).
mﬁne " . .
v X, &.77) = uf.(t,?ﬁ")-vi d#; B, (77 5.7 ) eG-7)

b (8.3)

Ql-.,
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vhere -
i(t,?:?',ij‘i) . Z Q’;(t-?""l? ViaT;) :
by (B.%)
is the welght density that the t™ bead is at 'f‘, the J™

bead 1s at F;, and some other bead 1s at F. With the
definitions of Egs. (B.3) and (B.k), it follows from Eq. (B.2)

that
.0, F) = [df g é.‘(ff')-"fﬁ'e (F-#) X, (L37),
‘ (B.9)

where v X,(t,'i':'f)'df gives the weight of configurations in
vhich there is an interference involving the t™ bead when
1t is in ¥ about T , but no interference of any pair of
interior beads. Equation (B.5) is the generalization of
Eq. (3.14), taking proper account of ternary and higher
order interferences. Similar generalizations of Eqs‘.. (3.1%)
and (3.16) will not be considered hers.

In Chapter IV we considered approximations of F(t,F:F).
On the basis of the above discussion, we should consider
instead |

Fler#) = Xt /8, (¢F)

-t (B.5)
= F(t,F:F)- Z f"ﬁ' T8 7 5.0) e (PR
T B * e
(8.6)

In the absence of volume exclusion, e+0, so that

T(LR:F) = R(tF:T

¢8.7)
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It 1s clear thet even vhen volume exclusion is considered,
T aiffers from F by terms that are at most of the order
vF, and the neglection of such terms is consistent with the

approximations of this thesis.

C. Derivstion of the Distribution Equation
for _ Ba(t,BsRRo)

From equations (3.4), (3.8) and (3.13) 1t follows that

EACTRENAL ft - o, WG R g0 --‘Z-'e(rt-ﬁ)J

I

zs@. %) Z $C-2.)

llnn) .
o[df, - [dF, W (%, %) g (3~ r,)fscr,,rz)Zsca-m (a)
_,‘" (Aw2)
'I“" I"'twt c)ﬂ(“"t) Ze(n r,)i& ..-R,)ZS(&- ) “‘)
: Jme [ 2 [ Y}
ofit [t w2 g2 588 § 8GR
Y] )
o[ @ [t W AR TS (A-RY FA-R) @
. ’ .u
& [ah W (- RY9(FR) Zecr.-r)w R)an k) .
(LU U1s:
-[‘?.‘...Idft W, (¢, %) (%) ze(rt- ,)ZJ(Q E)S( ia) )
‘.I

Line (a)z fdf‘ P, (¢,7, ¢ ﬁ.,-iﬂ 3 (F-7).

Line (o) [df, Bt :8)g(+2) § BB = BeR R)g(R).
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Line (@) [af &(6,AR)GR) 3G = T (8- R)9(-R).

Pyny
Iine (e): for j#} , we replace ZE (F,-T;) vy vZS(n r‘)
= ™

to obtain
- VIJ?" §z (% 7, E)S(?'?G‘S(?t'z‘s')? "’Eg(t. ® R, R,)q(-R).
For j'- 1. ve will have terms of the form
- [, o, W (2 R)§FR)EGeR) §GeR) §Ch- )
s - Idf Idrt P (.7 J‘rﬂ‘](r-fg)e "1.';') 5(?.'151) 5(&'.&-}
s - fap; 0, Red, H)  (R-F)E-R) 9 (FR)
R Y IR ATICE A TISO AN
Summing over§ gives . §‘ (t;e., :Ez)e (E-'Tizh('r'-'ﬁ.)..

Likewise, line (f) gives

for j+l -vF,(4,%: R, R)9G-R,) 5
for j«1 - §(,%,:R)e(R-R) 4 (7-7).

Iine (b): Forjik, j+ 1. have
e Tk, f#1., We Da .VIdﬂgi@q’t T, ‘ﬁugl) %(?-rt)

g-k (= 1 ), ve have terms of the form
S CERS A A CERAL T AT CRATIGR Y { §G-R)
= (1vg)
R LT X ARERAFICE AP RAFICN
» ev BRI RGR)-R).
Summing over §, ve get -vd (¢, R R, RY§(P-R).

Likewlse for {=1(# k), we will get
-y ! (t R; RC‘ R:)ﬁ(" R‘l)
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:gollecting terms, we have

!a(""t? : 'é..i,) = |dF(-) g, (¢, % '-R.'a -52 )

s B RNED] - -R]
v Bl GR) gGR)[i- €G]
- wi e, BB R )y(-8)

A SRR STICE A

-V f d?'s(F-??E,(t;#'.:; )

(3.16)

D. Distribution of zn Interior Bead
The main bodyof this thesis has been devoted to the

consideration of the distribution of an end (t*) bead about

the other end of the chain. However, it would be of interest

for many applications to know the distribution about the

erigin of an interfor bead. We shall now show how such a

quantity can be calculated nsing the formalism of ChapterIII.
As in Chapter III, @,(t,#:j R)afdR is defined to be

the relative weight of a chain of t links in which the t™

bead is in df about ¥ and the j bead is in df about R.

It follows from Eqs. (3.3) and (3.13) that

@t )s fag o [ W Ry B 9CF R

=
x E- ze(i-i’c)J §(%-R), (.1)
L _
vhich for 0<j « t can be written
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Qo P i 8) = [at-far Wy (7, R)gCRA) S(R-R)
[
=Y Jdt [ WG ) 108 R €Y S C-R)

ot (i)
[t oo [at R, R ) 9P RY (A1) S -R).
It follows from Egs. (3.3), (3.4) and the $-function behavior

of € that
Q (t+1,7:§,R) = fd?'g(?—?’) %(t,‘r":j,ﬁ)
a oy ¥
-,,Id,ﬁ-,(?-r-) 3, (&, §,Ry7T)
- - .

- v &.(t,R:j,R)q(F-R), .3)
for o¢j< t. Equation (D.3) can be checked for consistency
with the results of Chapter III. In particular, upon inte-
gration over all b

f aF @(eei, #:5,8) = E(t1 ), (D.4)
and .
[k &eer: 87 = BeeFF) - lFed ).
: : (D.5)
Therefore the result of integroting. Eq. (D.3) over all
R is exactly Eq. (3.14).
Equation (D.3) is valid only for t> j. It follows
directly from Eq. (D.1) that
* tz.(t.,‘? ti,H:t') is,the weight density of_configurations
in vhich the t™ bead is at T, the J* bead is at R and g

some other bead is at ¥ . See the Glossary for further
explanation of this notatiom.
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@ (jor,#:§,8) = fd?.--- f af; W, (B, %) 9F7,) $(F-R)
§=1

-3 I*ﬁ"'f4?i Wi (R, %) g(h8) G- 8 (7 7)),

[t ]

(0.6)
= [df &G 9(F-#) §(#-R)
- I df' §,(j, 77 -+ S(-R)
- [8G,0- v86,7:2)])96-2). oo

(It can also be noted that the summation over j=1 to t-1
of Eq. (D.3) with the use of Eqs. (3.7) and (D.7).1leads
exactly to Eq. (3.15).)

The formalism in Chapter III gives a method (in
principle) for the calculation of $.(J;R) and &,(3,ReR).
Then Eq.(D.7) can_be used to calculate @,(j+1,F:j,R). We
then can use the iterative procedure desecribed by Eq.(D.3)
and analogous highér-order equations to calculate
€ (t+1,T:3,R) for t>J. The distribution of the J* bead
regardless of the location of the t* beéd can then be
determined by integrating over all.F: _

Q,(t:j,'i)= f"("' ‘P.(t,?":j’-k‘). (P.8)

In 1light of the difficulties encountered in Chapter III,
the writer does not consider it practicable to use the above
formalism for the calculation of @(t:j,R).. Instead, the
application of James' second method will be considered.

In the absence of volume exclusion, the distribution
about the origin of the Jg’ bead when the t™ bead is
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unconstrained, is the same as the distritution of the j™

bead in a chain of J links--that is

e (t:§,R) = &7(iR)- ©.9)
When volume exclusion is considered,
o, (60, 8) = 37 (5, R) p UR)p (inR:td), (D.10)

vhere p(:],ﬁ:t-j) is the probability that there are no inter-
ferences between a chain of § links and extension ﬁ, and an
uncanstrained chaln of t- links begiming at K. We shall
again define the first-order‘ aprroximation as

@@ (t:iR) = BGRYAGR) P R ) (0.11)
It has previously been shown that (See Eq. (4.76) ).
. (i,R) = e.xp{ C-'U',\*—VR} (D.12)
Analogous to Ege.. (h-.83)‘ we can write
pe (i R:t-) = exp{- Z Bl } (®.13)
vhere
TE - vfareat A
"l @cl"”)

The details of this calculation will not be considered any
further here. It .will just be remarked that p(j,Rs t)
is relatively smaller for small R then it is for large R,
so that ¢'(t:j R) will be relatively more extended than
3,0,
BE. Evaluation of F.(t.FiR)
By definition £
Rlegif)= ) EGRIE @)
i 19-:-5 (t, R *g) .2)

R e s S 2 e



vhere

3= - R

In Chapter IV, such sums were replaced by integrals..

RiedR) = r“: 5GR) 8 (v4,3)
L §:ﬂ (t, Rf:)

Since - 32
2GR () (2§
It follows that

FLt,r R) = (—) exp( i?) j . [%"3:-)”:‘?(%81 _':-%)

x exp °{-$'t_‘i_.‘.)] )

Let .
@ § /).

Then

ResR) - 5 (3 e (B ’)J"*‘s 28 ool fp) e )

wvhere
t° J‘/—Zt_,

f" l;:

2 L
n % %-
Equation (E.7) can now be writien

F(thR) = e (s—zj)['((i,’l) + -K('L,f)] »

C 133

(B.2)

(E.3)

(E.4)

(B.5)

(B.6)

(E.7)

(£.8)
(E.9)

(E.10)

(E.11)
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vhere

(1 i
w(E) - (%h (?‘3;)” L‘s ""P.(.-.‘i;) exp (-72¢)

(E.12)
2 @V oy ea () e eg) (a)
"5 O] & e (esrey)
(v)
-1, (ay f,’ exp(L)exp ()
Ce)

From Bierens de Haan (1), Table 26, No.10, it follows that
the expression on line (a) is equal to

(3 e (ar) = 35 e (22), .

We consider both R& t, s « ty therefore §§«l, and
wé'¢«c 1. We consequently can expand the first exponential
on line (b), and the second exponential on line (c).

[ase(florcen)s [afi-ro. ] weler)

-{_,:-erfc -°fScxp(_)+r$z§erfc‘f...
(E.13)

j:d.‘ m("-’-:) exp () = S . ﬂ‘ exp (C1'y) exv(°2$)

;f m(g-,)[--_*...]

s § up('i'/s‘)- Ffede I + .- (E.14)

e e R R I
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Collecting terms, we obtaln with the neglection of terms

of o(t™"),
K(§.x) - exP(’R’) 3 erfc {Ts,

s

fron vhich it follows that
F.ltr'k) = exp (3R ’)[(ﬁi"z?; p( 3Rs)

-z.:_! evfc (TR -z% erfc ﬁs] + O(t"),

For 3= 0, Eq.. (E.16) reduces to

a2y (3
G, 7). ()" nr 2-?-,-: -2 erfe 3

in substantial agreement with the more accurate direct

caleulation given in Chapter IV. [ See Egqs. (4.33), (4.

end (4.35) -]

(E.15)

(E.16)

(E.17)

34,

For R)>1, s>1 the terms in Eq. (E.16) involving the

emplementaﬁ error functions can be neglected, so that

RitR) 2 e (- 20 (e 2o

F. Evaluation of Jda2 F.(4,0:8) Fo(%,F:T-5)

(E.18)

The sum over all cross-interferences of the probability

for a cross-interference is given by Ege (4.85):
zf‘a vfdl Fo(t,#:7-3) R (t-z,0,3),

(F.1)

It vas shown that IP is given approximately by CEq. (k. 90))
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Zf‘g \rfas 3 ggP(‘s) 2oy z“ gxp[ (R3- Rs)]

o«

- (F.2)
where Rs |$-3], and the integration is over all % for fixed
T. We shall consider the integration using prolate
spheroidal co-ordinates (33). Let -

ye 3R , aum =R ;
r b (F._B)
the volume element d§ is then given by
) .
0t (5] (Fut)avudg & (Y ORadtrd
With the above change of variables, Eg. (F.2) can be
rewritten as
' { -] [}
Zf‘ = Wre fdyjdﬂL xp [:w"-p (D-t/t)"] N
w ; o VM :
"] .
(F.5)
vhere ,,%_‘1::_‘, p=_211r__
F.6)

With appropiate integrations and changes of variables,
it can be shown that

. T
42 .
ZL*;:T{Z.?Q simh 232

S % c”.[‘_ z—t!"‘rzu]

(F.7)
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The integration could not be carried sny further exactly.
We shall consider here several limiting cases, omitting
81l details of the calculation, giving only the final
results..
1) Fory and p small, with the neglecti;)n of second=-order
terms in ¥ and 8,
. sy !
PRI (5)" ()" .6)

This is exactly the result one would get for t= O. The
above result wlll.be a good approximation for those
configurations with small extension, r=0(1).

i1} For vand '/, small, with the neglection of second-order
terms in ¥ and ‘fa,

Yo ., H

LR @ r.9)
For § large, r% J ; but since ¥ is small, r«<x® . This
approximation applies, then, primarily to ssall § (small
loops) and r »0(1).. The second term in Eq. (F.9) is
smaller than the first, and we note for future reference
that over the range of interest of this approximation, the
first term can be miltiplied by (%1)" with negligible
error.

111} For large ¥, small, (then g very large),

| O]
LR v mYh (&) n - 227 S
(F.10)
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The parameter JT—: is given by

up ‘r ( -x) (F.11)

The above conditions imply that either r or j is large,
but not both. In either case the second term on the right
hand side of Eqe.- (F.10) is small compared to the first.

iv) ¥ large L large larges

] g ? m g 9 F g ]

¥) ¥ large, _‘&g_. large, # smallj
"o

both these cases give approximately

IR -ACHE

Hovever, the conditions ¥ large, ‘—';—;- large, virtually

(F.12)

require both J and r relatively large. These cases will
be applicsble vnly for those configurations with §= O(.% )
and r= 0O(th). Whtle such cases can not be neglected, they
are certainly not as important as those with small j, and
those with large ] and small r.

On the basis of the above qualitative discussion, it
would seem reasonable to take

) ()i (F.13)

as being adequate over the entire range of interest. A
more detalled analysis, however, in vhich the range of
integration in Eq. (4.80) 1s split into several sub-intervals
and the aprroximation appropiate to each sub-interval is
considered, leads one to doubt the validity of using the
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single result given by Eq. (F.13).

We have seen in Section 9 of Chapter IV that an
independent approximation leads to exactly the same result
a8 Eq.- (F.13). Hhile‘no detailed justification of the
approximation is given there, the nature of the error due
to the approximation is discussed in some detail. On the
babis of these results, the writer chose to consider the
approximation given by Eqe (F.13) since it is adequate
for the most important limiting cases, and it can be given
an independent interpretation from which the nafurg of -the

error can be discussed.
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GLOSSARY OF NOTATION=®
e=(3/m )m, except in Chapter I where
¢ ¢ = concentration by weight..
F(t,1eR) Probability density that in a chain of
t links ind extension ¥, there is another’
bead at

Given by I(t TR/ §.(t T).

¥hen appearing with subscript zero, refers
to value calcuiated in the absence of
voluﬁe exclusione.-

F(ttR) refers to the same probability
density in a chain of unconstrained
extension..

(3/2% W exp(~-3/2), a priori robability
g(s) density for link extension ? 1
lengths are measured in mult:l. les of the
root mean square link length.

= Probability in a chain of t links and

P, (t,r) - extension T that there is an interference
involving the v*™ pair of beads regardless
of any other interference that may be
present.
P, refers specifically to configurations
in which there is a closed loop at T
(see Fig. 3) and gives the probability
that there is a particular cross-inter-
ference % (interference between a bead
oen the loop and one 'on remainder of chain)
regardless of any other Interferences that
may be present.

" Probability that there are no lnterferences
p(t,T) a chain of t links and extension T3
!'.(t ®)/ $Xt,1)..
. When appea.ring with a subscript zero,
refers to value calculated assuming probalities
for non-interference are independent.

*Oniy those terms are given that recur in several
places in the text, far removed from vwhere they are
originally defined.
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(t-3,723.0 Probability that there are no interferences

p(t-3,73,0 between a chain of t-j links and extension
T, and a closed loop of j links (closure
at T), taking account of volume exclusion
within the two chains. (Probability that
there are no cross-interferences.) The
corresponding quantity without the
argument i, p(t-J:3,0)= p(j,0:t-3J), is the
probability that there are no cross-
Interferences when the extension of the
¢hain of .t-j links is unconstrained.
When appearing with subscript zero, refers
to value calculated neglecting volume
exclusion within the two parts of the chain,
and assuming probabilities for non-cross-
interference are independent.-

(r‘) Mean square chain extension.
When appearing without subscript, refers to
c¢hain of ¢ links. = - - R =
<ridx (i) faf 8,1/ of Bt,P0.

{r’} Mean square chain extension for config-
urations in vhich both the end (£ ) bead and
some other bead is at *.. | . | - a
't = {r = far rB(t,TF)/ ) aF §(t,TT)

Unless specified otherwise, refers to

t number of links in the chain. ILinks are
numbsred 1,2,¢ + «4t-l,t. Beads are
nmbered O,l,- [} -’t-l’t--

The volume assoclated with each bead, such

v that the center of no other bead czn enter
into this volume without giving an interference
Celled the excluded volume.

8 ST = @oTA
8 (In Chapter III, §(F) is the 3-dimensional
Dirac § -function.)

A (gwYh vtk .
\ (Bxcept in Chapter I where Nis wave length.)

¢ =T &
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3 03:%-R)
2 dPdR, - dR,

is to a cha%x): dﬁith unconstrain

12

The relative weight of configurations of 2

chain of t links and extension T to within.

dF, in which the center of bead i is at

Ru"to within dR. , «r1,2..5; 91,

If the argument T is suppressed, reference
eé extension.

Thus 9(t:], is the relative weight

of configurations of a chain of t links

bead zero held fixed at the origin, beaé t

unconstrained, and the center of bead }J

at R to within dR.

The relative weight of configurations
of a chain of t links and extension ¥
to within d% in which there is an unspecified
interiorgbgad at B. to within dR. , «-1,2,
ssegqV WY U
Mixed cases in which some fixed points are
occupied by specified beads and other fixed
ggints are. occupied by unspecified beads

ve also been denoted by the capital &.
Thus &, (t,F:R;j,5)araRdE; is the relative
welght of congigurations of a chain of ¢
links and extension r to within dF, when bead
J is at T, to within df, =nd some other bead
is at R to within dR. - S
The superscript zero refers to value
calculated in the absence of volume.execlusion.
The superseripts 1,2,...refer to successive
approximations,



I i i o il e il Saall Al s e A e e . PP .

3
VIIA

Ira Jacobs was born on -Taziu;ary 3, 1931 in Brocklyn,
New York. He attended elementary and secondary schools in
Brooklyn, graduating from the Brooklyn Technical Higk
School in June 1947. He attended the City College of New
York from September 1947 to August 1950, and received the
Bachelor of Science degree in gugust 1950. He was a Gra&uate
Assistant in the Physies Department of Purdue University
from September 1950 to Jure 1952, and received the Master
of Science degree in June 1952. In the summer of 1952, he
was employed by the Signal Corps Engineering Leboratories,
Fort Monmouth, New Jersey. He returned to Purdue University
in September 1952, and was again a Graduate Assistant in the
Physies Department from September 1952 to August 1953. In
August 1953, he was' awvarded a fellowship by the Purdume
Research Foundstion for research in the statistical mechanics
of long chain molecules..



